
DATABASE MANAGEMENT SYSTEMS Page 1  

                 DIGITAL NOTES 

OF 

 
            DATABASE MANAGEMENT SYSTEMS 

[R24A0504] 

 

 
B. TECH II YEAR – I SEM 

(2025-26) 
 

 
 

 

 

 

 
     DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING 

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 

(Autonomous Institution – UGC, Govt. of India) 

Recognized under 2(f) and 12 (B) of UGC ACT 1956 
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - 

ISO 9001:2015 Certified) 

 

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana 
State, India 

 

 

 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 2  

Department of Computer Science and Engineering  

 

      Vision 
 

 To acknowledge quality education and instill high patterns of discipline making the students 

technologically superior and ethically strong which involves the improvement in the quality of life in 

human race. 

 

 

    Mission 

 

 
 To achieve and impart holistic technical education using the best of infrastructure, 

outstanding technical and teaching expertise to establish the students into competent and 

confident engineers. 

 Evolving the center of excellence through creative and innovative teaching learning practices 

for promoting academic achievement to produce internationally accepted competitive and 

world class professionals. 

 

Quality Policy 

 

 To pursue continual improvement of teaching learning process of Undergraduate and Post 

Graduate programs in Engineering & Management vigorously. 

 To provide state of art infrastructure and expertise to impart the quality education. 

 

 

 

 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 3  

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY  

                    DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING 

II Year B. Tech. CSE – I Sem                                                                     L/T/P/ C 

           3/-/-/3 

 
DATABASE MANAGEMENT SYSTEMS (R24A0504) 

 
OBJECTIVES:  

 To study the physical and logical database designs, database modeling, relational, hierarchical,  

and network models  

  To understand and use data manipulation language to query, update, and manage a database 

   To develop an understanding of essential DBMS concepts such as: database security, integrity, 

concurrency, distributed database, and intelligent database, Client/Server(Database Server),Data 

Warehousing.  

 To design and build a simple database system and demonstrate competence with the fundamental 

 tasks involved with modeling, designing, and implementing a DBMS 

  Familiar with basic database storage structures and access techniques: file and page organizations 

 

UNIT I: 

Database System Applications, Purpose of Database Systems, View of Data – Data 

Abstraction –Instances and Schemas – Database Languages – database Access for 

applications Programs – Database Users and Administrator – Transaction Management – 

Database Architecture – Storage Manager – the Query Processor. 

Data Models: Introduction to the Relational Model – Structure – Database Schema, Keys 

– Schema Diagrams. Database design– Other Models, ER diagrams – ER Model - 

Entities, Attributes and Entity sets – Relationships and Relationship sets – ER Design 

Issues – Concept Design – Conceptual Design with relevant Examples. Relational Query 

Languages, Relational Operations. 

UNIT II: 

Relational Algebra – Selection and projection set operations – renaming – Joins – 

Division – Examples of Algebra overviews – Relational calculus – Tuple Relational 

Calculus (TRC) – Domain relational calculus (DRC). 

Overview of the SQL Query Language – Basic Structure of SQL Queries, Set Operations, 

Aggregate Functions – GROUPBY – HAVING, Nested Sub queries, Views, Triggers, 

Procedures. 

UNIT III: 

Normalization – Introduction, Non loss decomposition and functional dependencies, 

First, Second, and third normal forms – dependency preservation, Boyce/Codd 

normal form. 

Higher Normal Forms - Introduction, Multi-valued dependencies and Fourth normal 

form, Join dependencies and Fifth normal form 



UNIT IV: 

Transaction Concept- Transaction State- Implementation of Atomicity and Durability – 

Concurrent Executions – Serializability- Recoverability – Implementation of Isolation – 

Testing for serializability- Lock –Based Protocols – Timestamp Based Protocols- 

Validation- Based Protocols – Multiple Granularity. 

UNIT V: 

Recovery and Atomicity – Log – Based Recovery – Recovery with Concurrent 

Transactions – Check Points - Buffer Management – Failure with loss of nonvolatile 

storage. 

 
TEXT BOOKS: 

1. Database System Concepts, Silberschatz, Korth, McGraw hill, Sixth Edition.(All 

UNITS except III ) 

2. Database Management Systems, Raghu Ramakrishnan, Johannes 

Gehrke, TATA McGraw-Hill 3rd Edition. 

 
REFERENCE BOOKS: 

1. Fundamentals of Database Systems, Elmasri Navathe Pearson Education. 

2. An Introduction to Database systems, C.J. Date, A.Kannan, S.Swami Nadhan, 

Pearson, Eight Edition for UNIT III. 

 
OUTCOMES: 

                       

                      At the end of this course, students will be able to: 

                 1. Demonstrate the basic elements of a relational database management system 

                  2. Ability to identify the data models for relevant problems 

                  3. Ability to design entity relationship and convert entity relationship diagrams into                                 

                      RDBMS and    formulate SQL queries 

                 4. Apply normalization for the given database 
                5. Understand the various Recovery Mechanisms 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
DATABASE MANAGEMENT SYSTEMS Page 3 



DATABASE MANAGEMENT SYSTEMS Page 4  

MALLAREDDY COLLEGE OF ENGINEERING AND TECHNOLOGY 

                                     DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING 

                                                                                     INDEX 

 
S. No 

 

      Unit 

 
   Topic 

Page 

no 

 
1 

 
I 

Introduction To Database 

Management System 

 
6 

2 I View Of Data 9 

3 I DBMS Architecture 11 

4 I Database Models 13 

5 I Database Languages 15 

6 I Database Users And Administrator 22 

7 I Keys 27 

8 I ER Model 29 

 
9 

II Relational Algebra And Calculus  
40 

10 II Sql 62 

11 II Aggregate Functions 69 

12 II Nested Queries 70 

13 II Views 80 

14 III Dependency Preservation 

Decomposition 

 
97 

15 III Normal Forms 100 

16 IV Transaction 127 

17 IV Serializability 133 

 



DATABASE MANAGEMENT SYSTEMS Page 5  

18 IV Lock-Based Protocols 144 

19 IV Multiple Granualarity 150 

20 V Log-Based Recovery 153 

21 V Buffer Management 155 

22 V Recovery 157 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



UNIT -I 
 

 

INTRODUCTION TO DBMS: 

 
 

What is data? 

 Data is nothing but facts and statistics stored or free flowing over a network, generally 

it's raw and unprocessed. 

 Data becomes information when it is processed, turning it into something meaningful. 

 What is database: The database is a collection of inter-related data which is used to 

retrieve, insert and delete the data efficiently. 

 It is also used to organize the data in the form of a table, schema, views, and reports, 

etc. 

 Using the database, you can easily retrieve, insert, and delete the information. 

 For example: The college Database organizes the data about the admin, staff, students 

and faculty etc. 

 

What is dbms? 
 

 

 

DBMS File System 

DBMS is a collection of data. In DBMS, the 

user is not required to write the procedures. 

File system is a collection of data. In this system, the 

user has to write the procedures for managing the 

database. 

Searching data is easy in Dbms Searching is difficult in File System 

Dbms is structured data Files are unstructured data 

No data redundancy in Dbms Data redundancy is there in file system 

Memory utilisation well in dbms Memory utilisation poor in file system 

No data inconsistency in dbms Inconsistency in file system 

DATABASE MANAGEMENT SYSTEMS Page 6 



DATABASE MANAGEMENT SYSTEMS Page 7  

DBMS gives an abstract view of data that hides 

the details. 

File system provides the detail of the data 

representation and storage of data. 

DBMS provides a crash recovery mechanism, 

i.e., DBMS protects the user from the system 

failure. 

File system doesn't have a crash mechanism, i.e., if 

the system crashes while entering some data, then the 

content of the file will lost. 

DBMS provides a good protection mechanism. It is very difficult to protect a file under the file 

system. 

DBMS contains a wide variety of sophisticated 

techniques to store and retrieve the data. 

File system can't efficiently store and retrieve the 

data. 

DBMS takes care of Concurrent access of data 

using some form of locking. 

In the File system, concurrent access has many 

problems like redirecting the file while other deleting 

some information or updating some information. 

 

  A DBMS is software that allows creation, definition and manipulation of database, 

allowing users to store, process and analyse data easily. 

 DBMS provides us with an interface or a tool, to perform various operations like 

creating database, storing data in it, updating data, creating tables in the database and 

a lot more. 

 DBMS also provides protection and security to the databases. 

 It also maintains data consistency in case of multiple users. 

Here are some examples of popular DBMS used these days: 

 MySql 

 Oracle 

 SQL Server 

 IBM DB2 

DATABASE APPLICATIONS – DBMS: 

 Applications where we use Database Management Systems are: 

 Telecom: There is a database to keeps track of the information regarding calls made, 

network usage, customer details etc. 

 
 



DATABASE MANAGEMENT SYSTEMS Page 8  

 Industry: Where it is a manufacturing unit, warehouse or distribution centre, each one 

needs a database to keep the records of ins and outs 

 Banking System: For storing customer info, tracking day to day credit and debit 

transactions, generating bank statements etc. 

 Sales: To store customer information, production information and invoice details. 

 Airlines: To travel though airlines, we make early reservations; this reservation 

information along with flight schedule is stored in database. 

 Education sector: Database systems are frequently used in schools and colleges to 

store and retrieve the data regarding student details, staff details, course details, exam 

details, payroll data, attendance details, fees details etc. 

 
PURPOSE OF DATABASE SYSTEMS 

 
 

 The main purpose of database systems is to manage the data. Consider a university 

that keeps the data of students, teachers, courses, books etc. To manage this data we 

need to store this data somewhere where we can add new data, delete unused data, 

update outdated data, retrieve data, to perform these operations on data we need a 

Database management system that allows us to store the data in such a way so that all 

these operations can be performed on the data efficiently. 

Characteristics of DBMS 

 Data stored into Tables: Data is never directly stored into the database. Data is stored 

into tables, created inside the database. 

 Reduced Redundancy: In the modern world hard drives are very cheap, but earlier 

when hard drives were too expensive, unnecessary repetition of data in database was a 

big problem. But DBMS follows Normalisation which divides the data in such a way 

that repetition is minimum. 

 Data Consistency: On Live data, i.e. data that is being continuosly updated and added, 

maintaining the consistency of data can become a challenge. But DBMS handles it all 

by itself. 

 Support Multiple user and Concurrent Access: DBMS allows multiple users to work 

on it(update, insert, delete data) at the same time and still manages to maintain the 

data consistency. 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 9  

 Query Language: DBMS provides users with a simple Query language, using which 

data can be easily fetched, inserted, deleted and updated in a database. 

 

Advantages of DBMS 

 
 

 Controls database redundancy: It can control data redundancy because it stores all the 

data in one single database file and that recorded data is placed in the database. 

 Data sharing: In DBMS, the authorized users of an organization can share the data 

among multiple users. 

 Easily Maintenance: It can be easily maintainable due to the centralized nature of the 

database system. 

 Reduce time: It reduces development time and maintenance need. 

 Backup: It provides backup and recovery subsystems which create automatic backup 

of data from hardware and software failures and restores the data if required. 

 multiple user interface: It provides different types of user interfaces like graphical 

user interfaces, application program interfaces 

 

Disadvantages of DBMS 

 
 

 Cost of Hardware and Software: It requires a high speed of data processor and large 

memory size to run DBMS software. 

 Size: It occupies a large space of disks and large memory to run them efficiently. 

 Complexity: Database system creates additional complexity and requirements. 

 Higher impact of failure: Failure is highly impacted the database because in most of 

the organization, all the data stored in a single database and if the database is damaged 

due to electric failure or database corruption then the data may be lost forever. 

 
View of Data in DBMS 

 Abstraction is one of the main features of database systems. 

 Hiding irrelevant details from user and providing abstract view of data to users, helps 

in easy and efficient user-database interaction. 

 the three level of DBMS architecture, The top level of that architecture is “view 

level”. The view level provides the “view of data” to the users and hides the irrelevant 

 

https://www.javatpoint.com/hardware
https://www.javatpoint.com/software
https://beginnersbook.com/2018/11/dbms-three-level-architecture/


DATABASE MANAGEMENT SYSTEMS Page 10  

details such as data relationship, database schema, constraints, security etc from the 

user. 

 
Data Abstraction in DBMS 

 
 

Database systems are made-up of complex data structures. To ease the user interaction with 

database, the developers hide internal irrelevant details from users. This process of hiding 

irrelevant details from user is called data abstraction. 

 

 

 
 
 

 

We have three levels of abstraction: 

Physical level: This is the lowest level of data abstraction. It describes how data is actually 

stored in database. You can get the complex data structure details at this level. 

 
Logical level: This is the middle level of 3-level data abstraction architecture. It describes 

what data is stored in database. 

 
View level: Highest level of data abstraction. This level describes the user interaction with 

database system. 

Instance and schema in DBMS 

 
 

 Definition of schema: Design of a database is called the schema. Schema is of three 

types: Physical schema, logical schema and view schema. 

 

 

 

https://beginnersbook.com/2015/04/constraints-in-dbms/


DATABASE MANAGEMENT SYSTEMS Page 11  

 The design of a database at physical level is called physical schema, how the data 

stored in blocks of storage is described at this level. 

 Design of database at logical level is called logical schema, programmers and 

database administrators work at this level, at this level data can be described as certain 

types of data records gets stored in data structures, however the internal details such 

as implementation of data structure is hidden at this level (available at physical level). 

 Design of database at view level is called view schema. This generally describes end 

user interaction with database systems. 

 
Definition of instance: 

The data stored in database at a particular moment of time is called instance of 

database. Database schema defines the variable declarations in tables that belong to a 

particular database; the value of these variables at a moment of time is called the instance of 

that database. 

 
DBMS ARCHITECTURE: 

 Database management systems architecture will help us understand the components of 

database system and the relation among them. 

 The architecture of DBMS depends on the computer system on which it runs. 

 the basic client/server architecture is used to deal with a large number of PCs, web 

servers, database servers and other components that are connected with networks. 

 The client/server architecture consists of many PCs and a workstation which are 

connected via the network. 

 DBMS architecture depends upon how users are connected to the database to get their 

request done. 

 

 
 

TYPES OF DBMS ARCHITECTURE 

 
 

There are three types of DBMS architecture: 

1. Single tier architecture 

2. Two tier architecture 

3. Three tier architecture 

 



DATABASE MANAGEMENT SYSTEMS Page 12  

 

1- Tier Architecture 

 In this type of architecture, the database is readily available on the client machine, any 

request made by client doesn’t require a network connection to perform the action on 

the database. 

 Any changes done here will directly be done on the database itself. It doesn't provide 

a handy tool for end users. 

 The 1-Tier architecture is used for development of the local application, where 

programmers can directly communicate with the database for the quick response. 

 
2. Two tier architecture 

 In two-tier architecture, the Database system is present at the server machine and the 

DBMS application is present at the client machine, these two machines are connected 

with each other through a reliable network. 

 Whenever client machine makes a request to access the database present at server 

using a query language like sql, the server perform the request on the database and 

returns the result back to the client. 

 The application connection interface such as JDBC, ODBC are used for the 

interaction between server and client. 

 

3- Tier Architecture 

 In three-tier architecture, another layer is present between the client machine and 

server machine. 

 In this architecture, the client application doesn’t communicate directly with the 

database systems present at the server machine, rather the client application 

 



DATABASE MANAGEMENT SYSTEMS Page 13  

communicates with server application and the server application internally 

communicates with the database system present at the server. 

 

 

 
DATA MODELS: 

 Data Model is the modeling of the data description, data semantics, and consistency 

constraints of the data. 

 It provides the conceptual tools for describing the design of a database at each level of 

data abstraction. 

 Therefore, there are following four data models used for understanding the structure 

of the database: 

 

Four Types of DBMS systems are: 

 
 

 Hierarchical database 

 Network database 

 Relational database 

 ER model database 

 

Hierarchical DBMS 

In a Hierarchical database, model data is organized in a tree-like structure. Data is Stored 

Hierarchically (top down or bottom up) format. Data is represented using a parent-child 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 14  

relationship. In Hierarchical DBMS parent may have many children, but children have only 

one parent. 

 

 

Network Model 

The network database model allows each child to have multiple parents. It helps you to 

address the need to model more complex relationships like as the orders/parts many-to-many 

relationship. In this model, entities are organized in a graph which can be accessed through 

several paths. 

 

 

 

 
Relational model 

Relational DBMS is the most widely used DBMS model because it is one of the easiest. This 

model is based on normalizing data in the rows and columns of the tables. Relational model 

stored in fixed structures and manipulated using SQL. 

 
Entity-Relationship Model 

Entity-Relationship (ER) Model is based on the notion of real-world entities and relationships 

among them. While formulating real-world scenario into the database model, the ER Model 

creates entity set, relationship set, general attributes and constraints. 

 

 

 

 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 15  

DBMS languages 

 
 

Database languages are used to read, update and store data in a database. There are several 

such languages that can be used for this purpose; one of them is SQL (Structured Query 

Language). 

 

 
 DDL – Data Definition Language: 

(CREATE,DROP,ALTER,TRUNCATE,COMMENT,RENAME) 

 DML – Data Manipulation Language: (INSERT, UPDATE,DELETE) 

 DCL – Data Control Language: (GRANT,REVOKE) 

 TCL-Transaction Control Language: (COMMIT,ROLLBACK) 

 

1. DDL(Data Definition Language) : DDL or Data Definition Language actually consists of 

the SQL commands that can be used to define the database schema. It simply deals with 

descriptions of the database schema and is used to create and modify the structure of database 

objects in the database. 

CREATE – it is used to create the database or its objects (like table, index, function, views, 

store procedure and triggers). 

There are two CREATE statements available in SQL: 

 CREATE DATABASE 

 CREATE TABLE 

CREATE DATABASE 

A Database is defined as a structured set of data. So, in SQL the very first step to store the 

data in a well structured manner is to create a database. The CREATE 

DATABASE statement is used to create a new database in SQL. 

Syntax: 

CREATE DATABASE database_name; 
 

https://www.geeksforgeeks.org/sql-create/


DATABASE MANAGEMENT SYSTEMS Page 16  

Example: 

SQL> CREATE DATABASE Employee; 

In order to get the list of all the databases, you can use SHOW DATABASES statement. 

Example – 

SQL> SHOW DATABASES; 

 
 

CREATE TABLE: 

The CREATE TABLE statement is used to create a table in SQL. We know that a table 

comprises of rows and columns. So while creating tables we have to provide all the 

information to SQL about the names of the columns, type of data to be stored in columns, 

size of the data etc. Let us now dive into details on how to use CREATE TABLE statement to 

create tables in SQL. 

Syntax: 

CREATE TABLE table_name 

( 

column1 data_type(size), 

column2 data_type(size), 

column3 data_type(size), 

.... 

); 

Example Query: 

This query will create a table named Students with three columns, ROLL_NO, NAME and 

SUBJECT. 

CREATE TABLE Students 

( 

ROLL_NO int(3), 

NAME varchar(20), 

SUBJECT varchar(20), 

); 

 
 

DROP: 

DROP is used to delete a whole database or just a table.The DROP statement destroys the 

objects like an existing database, table, index, or view. 

 
 



DATABASE MANAGEMENT SYSTEMS Page 17  

A DROP statement in SQL removes a component from a relational database management 

system (RDBMS). 

Syntax: 

DROP object object_name; 

Examples: 

DROP TABLE table_name; 

table_name: Name of the table to be deleted. 

DROP DATABASE database_name; 

database_name: Name of the database to be deleted. 

TRUNCATE 

It is used to remove all records from a table, including all spaces 

The TRUNCATE TABLE mytable statement is logically (though not physically) equivalent 

to the DELETE FROM mytable statement (without a WHERE clause). 

Syntax: 

TRUNCATE TABLE table_name; 

DROP vs TRUNCATE 

 Truncate is normally ultra-fast and its ideal for deleting data from a temporary table. 

 Truncate preserves the structure of the table for future use, unlike drop table where 

the table is deleted with its full structure. 

 Table or Database deletion using DROP statement cannot be rolled back, so it must be 

used wisely. 

 
To delete the whole database 

DROP DATABASE student_data; 

After running the above query whole database will be deleted. 

To truncate Student_details table from student_data database. 

TRUNCATE TABLE Student_details; 

ALTER (ADD, DROP, MODIFY) 

ALTER TABLE is used to add, delete/drop or modify columns in the existing table. It is also 

used to add and drop various constraints on the existing table. 

ALTER TABLE – ADD: 
 

 

 

 

 
 

https://www.geeksforgeeks.org/sql-drop-truncate/


DATABASE MANAGEMENT SYSTEMS Page 18  

ADD is used to add columns into the existing table. Sometimes we may require to add 

additional information, in that case we do not require to create the whole database 

again, ADD comes to our rescue. 

Syntax: 

ALTER TABLE table_name 

ADD (Columnname_1 datatype, 

Columnname_2 datatype, 

… 

Columnname_n datatype); 

 
 

ALTER TABLE – DROP 

DROP COLUMN is used to drop column in a table. Deleting the unwanted columns from the 

table. 

Syntax: 

ALTER TABLE table_name 

DROP COLUMN column_name; 

ALTER TABLE-MODIFY 

It is used to modify the existing columns in a table. Multiple columns can also be modified at 

once. 

ALTER TABLE table_name 

MODIFY column_name column_type; 

QUERY: 

To ADD 2 columns AGE and COURSE to table Student. 

ALTER TABLE Student ADD (AGE number(3),COURSE varchar(40)); 

MODIFY column COURSE in table Student 

ALTER TABLE Student MODIFY COURSE varchar(20); 

Comments 

As is any programming languages comments matter a lot in SQL also. In this set we will 

learn about writing comments in any SQL snippet. 

Comments can be written in the following three formats: 

 Single line comments. 

 Multi line comments 

 In line comments 
 
 



DATABASE MANAGEMENT SYSTEMS Page 19  

DML(Data Manipulation Language) : The SQL commands that deals with the 

manipulation of data present in the database belong to DML or Data Manipulation Language 

and this includes most of the SQL statements. 

SELECT Statement 

select statement is used to fetch data from relational database. A relational database is 

organized collection of data. As we know that data is stored inside tables in a database. SQL 

select statement or SQL select query is used to fetch data from one or more than one tables. 

 
SELECT Syntax 

One column: 

Here column_name is the name of the column for which we need to fetch data and 

table_name is the name of the table in the database. 

SELECT column_name FROM table_name; 

More than one columns: 

SELECT column_name_1, column_name_2, ... FROM table_name; 

To fetch the entire table or all the fields in the table: 

SELECT * FROM table_name; 

Example: 

SELECT EMP_NAME FROM EMPLOYEES; 

To fetch the entire EMPLOYEES table: 

SELECT * FROM EMPLOYEES; 

Query to fetch the fields ROLL_NO, NAME, AGE from the table Student: 

SELECT ROLL_NO, NAME, AGE FROM Student; 

INSERT INTO Statement 

The INSERT INTO statement of SQL is used to insert a new row in a table. There are two 

ways of using INSERT INTO statement for inserting rows: 

Only values: First method is to specify only the value of data to be inserted without the 

column names. 

 
INSERT INTO table_name VALUES (value1, value2, value3,…); 

 
 

Column names and values both: In the second method we will specify both the columns 

which we want to fill and their corresponding values as shown below: 

 
 



DATABASE MANAGEMENT SYSTEMS Page 20  

INSERT INTO table_name (column1, column2, column3,..) VALUES ( value1, value2, 

value3,..); 

Example: 

Method 1 (Inserting only values) : 

INSERT INTO Student VALUES (‘5′,’HARSH’,’WEST 

BENGAL’,’XXXXXXXXXX’,’19’); 

Method 2 (Inserting values in only specified columns): 

INSERT INTO Student (ROLL_NO, NAME, Age) VALUES (‘5′,’PRATIK’,’19’); 

UPDATE Statement 

The UPDATE statement in SQL is used to update the data of an existing table in database. 

We can update single columns as well as multiple columns using UPDATE statement as per 

our requirement. 

Basic Syntax: 

UPDATE TableName 

SET column_name1 = value, column_name2 = value.... 

WHERE condition; 

EX1: 

SQL> UPDATE EMPLOYEES 

SET EMP_SALARY = 10000 

WHERE EMP_AGE > 25; 

 
EX2; 

SQL> UPDATE EMPLOYEES 

SET EMP_SALARY = 120000 

WHERE EMP_NAME = 'Apoorv'; 

DELETE Statement 

The DELETE Statement in SQL is used to delete existing records from a table. We can delete 

a single record or multiple records depending on the condition we specify in the WHERE 

clause. 

Basic Syntax: 

DELETE FROM table_name WHERE some_condition; 

Deleting single record: Delete the rows where NAME = ‘Ram’. This will delete only the first 

row. 

DELETE FROM Student WHERE NAME = 'Ram'; 



DATABASE MANAGEMENT SYSTEMS Page 21  

Deleting multiple records: Delete the rows from the table Student where Age is 20. This will 

delete 2 rows(third row and fifth row). 

DELETE FROM Student WHERE Age = 20; 

Delete all of the records: There are two queries to do this as shown below, 

query1: "DELETE FROM Student"; 

query2: "DELETE * FROM Student"; 

DCL(Data Control Language) : DCL includes commands such as GRANT and REVOKE 

which mainly deals with the rights, permissions and other controls of the database system. 

Examples of DCL commands: 

GRANT-gives user’s access privileges to database. 

REVOKE-withdraw user’s access privileges given by using the GRANT command. 

 
 

TCL(transaction Control Language) : TCL commands deals with the transaction within the 

database. 

Examples of TCL commands: 

COMMIT– commits a Transaction. 

ROLLBACK– rollbacks a transaction in case of any error occurs. SAVEPOINT–

sets a savepoint within a transaction. 

SET TRANSACTION–specify characteristics for the transaction. 

 
 

What is the Procedure for Database Access? 

 Any access to the stored data is done by the data manager. A user’s request for data 

is-received by the data manager, which detern1ines the physical record required. The 

decision as 10 which physical record is needed may require some preliminary 

consultation of the database and/or the data dictionary prior to the access of the actual 

data itself. 

 The data manager sends the request for a specific physical record to the file manager. 

The file manager decides which physical block of secondary storage devices contains 

the required record and sends the request for the appropriate block to the disk 

manager. A block is a unit of physical input/output operations between primary and 

secondary storage. The disk manager retrieves the block and sends it to the file 

manager, which sends the required record to the data manager. 

 

 

 

https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/
https://ecomputernotes.com/fundamental/what-is-a-database/advantages-and-disadvantages-of-dbms
https://ecomputernotes.com/fundamental/input-output-and-memory/explain-secondary-storage-devices


DATABASE MANAGEMENT SYSTEMS Page 22  

 
 

 

DATA BASE USERS AND ADMINISTRATORS: 

Database users are the persons who interact with the database and take the benefits of 

database. 

They are differentiated into different types based on the way they expect to interact with the 

system. 

Naive users: They are the unsophisticated users who interact with the system by using 

permanent applications that already exist. Example: Online Library Management System, 

ATMs (Automated Teller Machine), etc. 

Application programmers: They are the computer professionals who interact with system 

through DML. They write application programs. 

Sophisticated users: They interact with the system by writing SQL queries directly through 

the query processor without writing application programs. 

Specialized users: They are also sophisticated users who write specialized database 

applications that do not fit into the traditional data processing framework. Example: Expert 

System, Knowledge Based System, etc. 

 
Database Administrators 

 
 

The life cycle of database starts from designing, implementing to administration of it. A 

database for any kind of requirement needs to be designed perfectly so that it should work 

without any issues. Once all the design is complete, it needs to be installed. Once this step is 

complete, users start using the database. The database grows as the data grows in the 

database. When the database becomes huge, its performance comes down. Also accessing the 

data from the database becomes challenge. There will be unused memory in database, making 

the memory inevitably huge. These administration and maintenance of database is taken care 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 23  

by database Administrator – DBA. 

A DBA has many responsibilities. A good performing database is in the hands of DBA. 

Database Administrators coordinate all the activities of the database system. They have all 

the permissions. 

 
Tasks of DBA 

 
 

 Creatingtheschema 

 Specifying integrity constraints 

 Storage structure and access method definition 

 Granting permission to other users. 

 Monitoring performance 

 Routine Maintenance 

 

Transaction Management? 

 
 

 A Database Transaction is a logical unit of processing in a DBMS which entails one 

or more database access operation. In a nutshell, database transactions represent real- 

world events of any enterprise. 

 All types of database access operation which are held between the beginning and end 

transaction statements are considered as a single logical transaction in DBMS. During 

the transaction the database is inconsistent. Only once the database is committed the 

state is changed from one consistent state to another. 

 
What are ACID Properties? 

 
 

ACID Properties are used for maintaining the integrity of database during transaction 

processing. ACID in DBMS stands for Atomicity, Consistency, Isolation, and Durability. 

 Atomicity: A transaction is a single unit of operation. You either execute it entirely or 

do not execute it at all. There cannot be partial execution. 

 Consistency: Once the transaction is executed, it should move from one consistent 

state to another. 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 24  

 Isolation: Transaction should be executed in isolation from other transactions (no 

Locks). During concurrent transaction execution, intermediate transaction results from 

simultaneously executed transactions should not be made available to each other. 

(Level 0,1,2,3) 

 Durability: · After successful completion of a transaction, the changes in the 

database should persist. Even in the case of system failures. 

 

Storage Manager In DBMS 

 A storage manager is a program module that provides the interface between the 

lowlevel data stored in the database and the application programs and queries 

submitted to the system. 

 The storage manager is responsible for the interaction with the file manager. 

 The raw data are stored on the disk using the file system, which is usually provided by 

a conventional operating system. 

 The storage manager translates the various DML statements into low-level file-system 

commands. Thus, the storage manager is responsible for storing, retrieving, and 

updating data in the database. 

The storage manager components include: 

1. Authorization and integrity manager, which tests for the satisfaction of integrity constraints 

and checks the authority of users to access data. 

2. Transaction manager, which ensures that the database remains in a consistent (correct) 

state despite system failures, and that concurrent transaction executions proceed without 

conflicting. 

3. File manager, which manages the allocation of space on disk storage and the data 

structures used to represent information stored on disk. 

4. Buffer manager, which is responsible for fetching data from disk storage into main 

memory, and deciding what data to cache in main memory. The buffer manager is a critical 

part of the database system, since it enables the database to handle data sizes that are much 

larger than the size of main memory.The storage manager implements several data structures 

as part of the physical system implementation: 

 
 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 25  

 

Query Processing in DBMS 

 
 

A query processor is one of the major components of a relational database or an electronic 

database in which data is stored in tables of rows and columns. It complements the storage 

engine, which writes and reads data to and from storage media. 

 

 

 

 
 

Parsing and Translation 

 
As query processing includes certain activities for data retrieval. Initially, the given user 

queries get translated in high-level database languages such as SQL. It gets translated into 

expressions that can be further used at the physical level of the file system. After this, the 

actual evaluation of the queries and a variety of query -optimizing transformations and takes 

place. 

 
Query Evaluation Plan 

o In order to fully evaluate a query, the system needs to construct a query evaluation 

plan. 

o The annotations in the evaluation plan may refer to the algorithms to be used for the 

particular index or the specific operations. 

o Such relational algebra with annotations is referred to as Evaluation Primitives. The 

evaluation primitives carry the instructions needed for the evaluation of the operation. 

 

 



DATABASE MANAGEMENT SYSTEMS Page 26  

o Thus, a query evaluation plan defines a sequence of primitive operations used for 

evaluating a query. The query evaluation plan is also referred to as the query 

execution plan. 

o A query execution engine is responsible for generating the output of the given query. 

It takes the query execution plan, executes it, and finally makes the output for the user 

query. 

 

Optimization 

o The cost of the query evaluation can vary for different types of queries. Although the 

system is responsible for constructing the evaluation plan, the user does need not to 

write their query efficiently. 

o Usually, a database system generates an efficient query evaluation plan, which 

minimizes its cost. This type of task performed by the database system and is known 

as Query Optimization. 

o For optimizing a query, the query optimizer should have an estimated cost analysis of 

each operation. It is because the overall operation cost depends on the memory 

allocations to several operations, execution costs, and so on. 

 

 

 

What is Relational Model? 

 
Relational Model (RM) represents the database as a collection of relations. A relation is 

nothing but a table of values. Every row in the table represents a collection of related data 

values. These rows in the table denote a real-world entity or relationship. 

 

The table name and column names are helpful to interpret the meaning of values in each row. 

The data are represented as a set of relations. In the relational model, data are stored as tables. 

However, the physical storage of the data is independent of the way the data are logically 

organized. 

Relational Model Concepts 

 
1. Attribute: Each column in a Table. Attributes are the properties which define a 

relation. e.g., Student_Rollno, NAME,etc. 

 



DATABASE MANAGEMENT SYSTEMS Page 27  

2. Tables – In the Relational model the, relations are saved in the table format. It is 

stored along with its entities. A table has two properties rows and columns. Rows 

represent records and columns represent attributes. 

3. Tuple – It is nothing but a single row of a table, which contains a single record. 

4. Relation Schema: A relation schema represents the name of the relation with its 

attributes. 

5. Degree: The total number of attributes which in the relation is called the degree of the 

relation. 

6. Cardinality: Total number of rows present in the Table. 

7. Column: The column represents the set of values for a specific attribute. 

8. Relation instance – Relation instance is a finite set of tuples in the RDBMS system. 

Relation instances never have duplicate tuples. 

9. Relation key - Every row has one, two or multiple attributes, which is called relation 

key. 

10. Attribute domain – Every attribute has some pre-defined value and scope which is 

known as attribute domain 

Keys in DBMS 

KEYS in DBMS is an attribute or set of attributes which helps you to identify a row(tuple) in 

a relation(table). They allow you to find the relation between two tables. Keys help you 

uniquely identify a row in a table by a combination of one or more columns in that table. Key 

is also helpful for finding unique record or row from the table. Database key is also helpful 

for finding unique record or row from the table. 

 

 
 

Why we need a Key? 

 
Here are some reasons for using sql key in the DBMS system. 

 
 Keys help you to identify any row of data in a table. In a real-world application, a 

table could contain thousands of records. Moreover, the records could be duplicated. 

Keys ensure that you can uniquely identify a table record despite these challenges. 

 Allows you to establish a relationship between and identify the relation between 

tables 

 Help you to enforce identity and integrity in the relationship. 
 
 



DATABASE MANAGEMENT SYSTEMS Page 28  

Types of Keys in Database Management System 

 
There are mainly seven different types of Keys in DBMS and each key has its different 

functionality: 

 

 Super Key - A super key is a group of single or multiple keys which identifies rows 

in a table. 

 Primary Key - is a column or group of columns in a table that uniquely identify 

every row in that table. 

 Candidate Key - is a set of attributes that uniquely identify tuples in a table. 

Candidate Key is a super key with no repeated attributes. 

 Alternate Key - is a column or group of columns in a table that uniquely identify 

every row in that table. 

 Foreign Key - is a column that creates a relationship between two tables. The 

purpose of Foreign keys is to maintain data integrity and allow navigation between 

two different instances of an entity. 

 Compound Key - has two or more attributes that allow you to uniquely recognize a 

specific record. It is possible that each column may not be unique by itself within the 

database. 

 Composite Key - An artificial key which aims to uniquely identify each record is 

called a surrogate key. These kind of key are unique because they are created when 

you don't have any natural primary key. 

 Surrogate Key - An artificial key which aims to uniquely identify each record is 

called a surrogate key. These kind of key are unique because they are created when 

you don't have any natural primary key. 

Primary key example: 

CREATE TABLE Persons ( 

ID int NOT NULL, 

LastName varchar(255) NOT NULL, 

FirstName varchar(255), 

Age int, 

PRIMARY KEY (ID) 

); 
 
 

 



DATABASE MANAGEMENT SYSTEMS Page 29  

Create Primary Key (ALTER TABLE statement) 

 
 

Syntax 

The syntax to create a primary key using the ALTER TABLE statement in SQL is: 
 

FOREIGN KEY on CREATE TABLE 

 
The following SQL creates a FOREIGN KEY on the "PersonID" column when the "Orders" 

table is created: 

CREATE TABLE Orders ( 

OrderID int NOT NULL, 

OrderNumber int NOT NULL, 

PersonID int, 

PRIMARY KEY (OrderID), 

FOREIGN KEY (PersonID) REFERENCES Persons(PersonID) 

); 

ER model 

o ER model stands for an Entity-Relationship model. It is a high-level data model. This 

model is used to define the data elements and relationship for a specified system. 

o It develops a conceptual design for the database. It also develops a very simple and 

easy to design view of data. 

o In ER modeling, the database structure is portrayed as a diagram called an entity- 

relationship diagram. 

 
For example, Suppose we design a school database. In this database, the student will be an 

entity with attributes like address, name, id, age, etc. The address can be another entity with 

attributes like city, street name, pin code, etc and there will be a relationship between them. 

 
 

 

 

 

 

ALTER TABLE table_name 

ADD CONSTRAINT constraint_name 

PRIMARY KEY (column1, column2, ... column_n); 



DATABASE MANAGEMENT SYSTEMS Page 30  

 
 

Component of ER Diagram 
 

 

 

 
 

1. Entity: 

 
An entity may be any object, class, person or place. In the ER diagram, an entity can be 

represented as rectangles. 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 31  

Consider an organization as an example- manager, product, employee, department etc. can be 

taken as an entity. 

 
a. Weak Entity 

 
An entity that depends on another entity called a weak entity. The weak entity doesn't contain 

any key attribute of its own. The weak entity is represented by a double rectangle. 

 
2. Attribute 

 
The attribute is used to describe the property of an entity. Eclipse is used to represent an 

attribute. 

 

For example, id, age, contact number, name, etc. can be attributes of a student. 
 

 

 

 
a. Key Attribute 

 
The key attribute is used to represent the main characteristics of an entity. It represents a 

primary key. The key attribute is represented by an ellipse with the text underlined. 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 32  

 
 

b. Composite Attribute 

 
An attribute that composed of many other attributes is known as a composite attribute. The 

composite attribute is represented by an ellipse, and those ellipses are connected with an 

ellipse. 

 

 

 

 

 
 

c. Multivalued Attribute 

 
An attribute can have more than one value. These attributes are known as a multivalued 

attribute. The double oval is used to represent multivalued attribute. 

 

For example, a student can have more than one phone number. 
 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 33  

 
 

d. Derived Attribute 

 
An attribute that can be derived from other attribute is known as a derived attribute. It can be 

represented by a dashed ellipse. 

 

For example, A person's age changes over time and can be derived from another attribute 

like Date of birth. 

 

 

 
3. Relationship 

 
A relationship is used to describe the relation between entities. Diamond or rhombus is used 

to represent the relationship 

 

 

 

Types of relationship are as follows: 
 



DATABASE MANAGEMENT SYSTEMS Page 34  

a. One-to-One Relationship 

 
When only one instance of an entity is associated with the relationship, then it is known as 

one to one relationship. 

 

For example, A female can marry to one male, and a male can marry to one female. 
 

 
b. One-to-many relationship 

 
When only one instance of the entity on the left, and more than one instance of an entity on 

the right associates with the relationship then this is known as a one-to-many relationship. 

 

For example, Scientist can invent many inventions, but the invention is done by the only 

specific scientist. 

 

 

 

c. Many-to-one relationship 

 
When more than one instance of the entity on the left, and only one instance of an entity on 

the right associates with the relationship then it is known as a many-to-one relationship. 

 

For example, Student enrolls for only one course, but a course can have many students. 
 

 
 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 35  

d. Many-to-many relationship 

 
When more than one instance of the entity on the left, and more than one instance of an entity 

on the right associates with the relationship then it is known as a many-to-many relationship. 

 

For example, Employee can assign by many projects and project can have many employees. 
 

Notation of ER diagram 

 
Database can be represented using the notations. In ER diagram, many notations are used to 

express the cardinality. These notations are as follows: 

 
 

 

Integrity Constraints 

o Integrity constraints are a set of rules. It is used to maintain the quality of information. 

o Integrity constraints ensure that the data insertion, updating, and other processes have 

to be performed in such a way that data integrity is not affected. 

 



DATABASE MANAGEMENT SYSTEMS Page 36  

o Thus, integrity constraint is used to guard against accidental damage to the database. 

 
Types of Integrity Constraint 

 

 

 

 

 

 
1. Domain constraints 

o Domain constraints can be defined as the definition of a valid set of values for an 

attribute. 

o The data type of domain includes string, character, integer, time, date, currency, etc. 

The value of the attribute must be available in the corresponding domain. 

 
Example: 

 

 

 

 

 
2. Entity integrity constraints 

o The entity integrity constraint states that primary key value can't be null. 

o This is because the primary key value is used to identify individual rows in relation 

and if the primary key has a null value, then we can't identify those rows. 

o A table can contain a null value other than the primary key field. 
 



DATABASE MANAGEMENT SYSTEMS Page 37  

 
3. Referential 

 
Integrity Constraints 

o A referential integrity constraint is specified between two tables. 

o In the Referential integrity constraints, if a foreign key in Table 1 refers to the 

Primary Key of Table 2, then every value of the Foreign Key in Table 1 must be null 

or be available in Table 2. 

 

 
4. Key constraints 

o Keys are the entity set that is used to identify an entity within its entity set uniquely. 

o An entity set can have multiple keys, but out of which one key will be the primary 

key. A primary key can contain a unique and null value in the relational table. 

 



DATABASE MANAGEMENT SYSTEMS Page 38  

 
 

ER Design Issues 

 ER design issues need to be discussed for better ER- design 

 users often mislead the concept of the elements and the design process of the ER 

diagram. Thus, it leads to a complex structure of the ER diagram and certain issues 

that does not meet the characteristics of the real-world enterprise model. 

 Here, we will discuss the basic design issues of an ER database schema in the 

following points: 

 
1) Use of Entity Set vs Attributes 

 
The use of an entity set or attribute depends on the structure of the real-world enterprise that 

is being modelled and the semantics associated with its attributes. It leads to a mistake when 

the user use the primary key of an entity set as an attribute of another entity set. Instead, he 

should use the relationship to do so. Also, the primary key attributes are implicit in the 

relationship set, but we designate it in the relationship sets. 

 

2) Use of Entity Set vs. Relationship Sets 

It is difficult to examine if an object can be best expressed by an entity set or relationship set. 

 
3) Use of Binary vs n-ary Relationship Sets 

Generally, the relationships described in the databases are binary relationships. However, 

non-binary relationships can be represented by several binary relationships. 

 

4) Placing Relationship Attributes 

 
The cardinality ratios can become an affective measure in the placement of the relationship 

attributes. So, it is better to associate the attributes of one-to-one or one-to-many relationship 

sets with any participating entity sets, instead of any relationship set. 

 
 

 

 



DATABASE MANAGEMENT SYSTEMS Page 39  

Conceptual design 

Conceptual design is the first stage in the database design process. The goal at this stage is to 

design a database that is independent of database software and physical details. The output of 

this process is a conceptual data model that describes the main data entities, attributes, 

relationships, and constraints of a given problem domain. 

Keep in mind the following minimal data rule: 

 
 

"All that is needed is there, and all that is there is needed". 

1. Data analysis and requirements 

 
 

2. Entity relationship modeling and normalization 

 
 

3. Data model verification 

 
 

4. Distributed database design 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 40  

UNIT-II 

 
Relational Algebra 

 Relational Algebra is procedural query language, which takes Relation as input and 

generates relation as output. Relational algebra mainly provides theoretical 

foundation for relational databases and SQL. 

 Relational algebra is a procedural query language, it means that it tells what data to be 

retrieved and how to be retrieved. 

 Relational Algebra works on the whole table at once, so we do not have to use loops 

etc to iterate over all the rows (tuples) of data one by one. 

 All we have to do is specify the table name from which we need the data, and in a 

single line of command, relational algebra will traverse the entire given table to fetch 

data for you. 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 



 

 

Basic/Fundamental Operations: 

 
1. Select (σ) 

2. Project (∏) 

3. Union (𝖴) 

4. Set Difference (-) 

5. Cartesian product (X) 

6. Rename (ρ) 

 
1. Select Operation (σ) :This is used to fetch rows (tuples) from table(relation) which 

satisfies a given condition. 

Syntax: σp(r) 

 
 σ is the predicate 

 r stands for relation which is the name of the table 

 p is prepositional logic 

ex: σage > 17 (Student) 

This will fetch the tuples(rows) from table Student, for which age will be greater than 17. σage 

> 17 and gender = 'Male' (Student) 

This will return tuples(rows) from table Student with information of male students, of age 

more than 17. 

 
BRANCH_NAME LOAN_NO AMOUNT 

Downtown L-17 1000 

Redwood L-23 2000 

Perryride L-15 1500 

Downtown L-14 1500 

Mianus L-13 500 

Roundhill L-11 900 

Perryride L-16 1300 

 
 

DATABASE MANAGEMENT SYSTEMS Page 41 



DATABASE MANAGEMENT SYSTEMS Page 42  

Input: 

σ BRANCH_NAME="perryride" (LOAN) 

 

 
 

Output: 
 

BRANCH_NAME LOAN_NO AMOUNT 

Perryride L-15 1500 

Perryride L-16 1300 

 

 
Project Operation (∏): 

 Project operation is used to project only a certain set of attributes of a relation. In 

simple words, If you want to see only the names all of the students in 

the Student table, then you can use Project Operation. 

 It will only project or show the columns or attributes asked for, and will also remove 

duplicate data from the columns. 

Syntax of Project Operator (∏) 

∏ column_name1, column_name2, .... , column_nameN(table_name)  

 
 

Example: 

∏Name, Age(Student) 

Above statement will show us only the Name and Age columns for all the rows of data 

in Student table. 

 
Example: CUSTOMER RELATION 

 

NAME STREET CITY 

Jones Main Harrison 

Smith North Rye 

Hays Main Harrison 

 



DATABASE MANAGEMENT SYSTEMS Page 43  

Curry North Rye 

Johnson Alma Brooklyn 

Brooks Senator Brooklyn 

 

 

 
 

Input: 

∏ NAME, CITY (CUSTOMER) 

 
Output: 

 

NAME CITY 

Jones Harrison 

Smith Rye 

Hays Harrison 

Curry Rye 

Johnson Brooklyn 

Brooks Brooklyn 

 
Union Operation (𝖴): 

 
 

 This operation is used to fetch data from two relations(tables) or temporary 

relation(result of another operation). 

 For this operation to work, the relations(tables) specified should have same number of 

attributes(columns) and same attribute domain. Also the duplicate tuples are 

autamatically eliminated from the result. 

Syntax: A 𝖴 B 

∏Student(RegularClass) 𝖴 ∏Student(ExtraClass) 
 

 



DATABASE MANAGEMENT SYSTEMS Page 44  

Example: 

 
DEPOSITOR RELATION 

 

CUSTOMER_NAME ACCOUNT_NO 

Johnson A-101 

Smith A-121 

Mayes A-321 

Turner A-176 

Johnson A-273 

Jones A-472 

Lindsay A-284 

 

BORROW RELATION 
 

CUSTOMER_NAME LOAN_NO 

Jones L-17 

Smith L-23 

Hayes L-15 

Jackson L-14 

Curry L-93 

Smith L-11 

 



DATABASE MANAGEMENT SYSTEMS Page 45  

Williams L-17 

 

Input: 

∏ CUSTOMER_NAME (BORROW) 𝖴 ∏ CUSTOMER_NAME (DEPOSITOR) 

 
Output: 

 

CUSTOMER_NAME 

Johnson 

Smith 

Hayes 

Turner 

Jones 

Lindsay 

Jackson 

Curry 

Williams 

Mayes 

 

 
Set Difference (-): 

This operation is used to find data present in one relation and not present in the second 

relation. This operation is also applicable on two relations, just like Union operation. 

Syntax: A - B 

where A and B are relations. 

For example, if we want to find name of students who attend the regular class but not the 

extra class, then, we can use the below operation: 

∏Student(RegularClass) - ∏Student(ExtraClass) 



DATABASE MANAGEMENT SYSTEMS Page 46  

Input: ∏ CUSTOMER_NAME (BORROW) ∩ ∏ CUSTOMER_NAME (DEPOSITOR) 
 

CUSTOMER_NAME 

Smith 

Jones 

Cartesian Product (X): 

 

 

This is used to combine data from two different relations(tables) into one and fetch data from 

the combined relation. 

Syntax: A X B 

For example, if we want to find the information for Regular Class and Extra Class which are 

conducted during morning, then, we can use the following operation: 

σtime = 'morning' (RegularClass X ExtraClass) 

For the above query to work, both RegularClass and ExtraClass should have the 

attribute time. 

Notation: E X D 

 
EMPLOYEE 

 

EMP_ID EMP_NAME EMP_DEPT 

1 Smith A 

2 Harry C 

3 John B 

 

 

 

 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 47  

DEPARTMENT 
 

DEPT_NO DEPT_NAME 

A Marketing 

B Sales 

C Legal 

 

Input: 

EMPLOYEE X DEPARTMENT 

 
Output: 

 

EMP_ID EMP_NAME EMP_DEPT DEPT_NO DEPT_NAME 

1 Smith A A Marketing 

1 Smith A B Sales 

1 Smith A C Legal 

2 Harry C A Marketing 

2 Harry C B Sales 

2 Harry C C Legal 

3 John B A Marketing 

3 John B B Sales 

 



DATABASE MANAGEMENT SYSTEMS Page 48  

3 John B C Legal 

 

Rename Operation (ρ): 

 

 

This operation is used to rename the output relation for any query operation which returns 

result like Select, Project etc. Or to simply rename a relation(table) 

Syntax: ρ(RelationNew, RelationOld) 

 
The rename operation is used to rename the output relation. It is denoted by rho (ρ). 

 
Example: We can use the rename operator to rename STUDENT relation to STUDENT1. 

ρ(STUDENT1, STUDENT) 

 

 
Join in DBMS: 

 
 A JOIN clause is used to combine rows from two or more tables, based on a related 

column between them. 

 Join in DBMS is a binary operation which allows you to combine join product and 

selection in one single statement. 

 The goal of creating a join condition is that it helps you to combine the data from two 

or more DBMS tables. 

 The tables in DBMS are associated using the primary key and foreign keys. 

 
Types of SQL JOIN 

1. INNER JOIN 

2. LEFT JOIN 

3. RIGHT JOIN 

4. FULL JOIN 

 
Table name: EMPLOYEE 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 49  

EMP_ID EMP_NAME CITY SALARY AGE 

1 Angelina Chicago 200000 30 

2 Robert Austin 300000 26 

3 Christian Denver 100000 42 

4 Kristen Washington 500000 29 

5 Russell Los angels 200000 36 

6 Marry Canada 600000 48 

 

PROJECT 
 

PROJECT_NO EMP_ID DEPARTMENT 

101 1 Testing 

102 2 Development 

103 3 Designing 

104 4 Development 

 

1. INNER JOIN 

 
In SQL, INNER JOIN selects records that have matching values in both tables as long as the 

condition is satisfied. 

 

It returns the combination of all rows from both the tables where the condition satisfies. 
 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 50  

Syntax 

SELECT table1.column1, table1.column2 

FROM table1 INNER JOIN table2 

ON table1.matching_column = table2.matching_column; 

 
Query 

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT 

FROM EMPLOYEE INNER JOIN PROJECT 

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID; 

 

 

 

Output 
 

EMP_NAME DEPARTMENT 

Angelina Testing 

Robert Development 

Christian Designing 

Kristen Development 

 

 
2. LEFT JOIN 

 
The SQL left join returns all the values from left table and the matching values from the right 

table. If there is no matching join value, it will return NULL. 

 

 

 

 

 
 

 

 



DATABASE MANAGEMENT SYSTEMS Page 51  

 

 

Syntax 

SELECT table1.column1, table1.column2 FROM table1 

LEFT JOIN table2 

ON table1.matching_column = table2.matching_column; 

 
Query 

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT 

FROM EMPLOYEE LEFT JOIN PROJECT 

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID; 

 
Output 

 

EMP_NAME DEPARTMENT 

Angelina Testing 

Robert Development 

Christian Designing 

Kristen Development 

Russell NULL 

Marry NULL 

 

3. RIGHT JOIN 
 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 52  

In SQL, RIGHT JOIN returns all the values from the values from the rows of right table and 

the matched values from the left table. If there is no matching in both tables, it will return 

NULL. 

 

 
Syntax 

SELECT table1.column1, table1.column2 

FROM table1 RIGHT JOIN table2 

ON table1.matching_column = table2.matching_column; 

 
Query 

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT 

FROM EMPLOYEE RIGHT JOIN PROJECT 

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID; 

 
Output 

 

EMP_NAME DEPARTMENT 

Angelina Testing 

Robert Development 

Christian Designing 

Kristen Development 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 53  

4. FULL JOIN 

 
In SQL, FULL JOIN is the result of a combination of both left and right outer join. Join 

tables have all the records from both tables. It puts NULL on the place of matches not found. 

 

 
Syntax 

SELECT table1.column1, table1.column2 

FROM table1 FULL JOIN table2 

ON table1.matching_column = table2.matching_column; 

 

 

 

Query 

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT 

FROM EMPLOYEE 

FULL JOIN PROJECT 

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID; 

 
Output 

 

EMP_NAME DEPARTMENT 

Angelina Testing 

Robert Development 

Christian Designing 

Kristen Development 

Russell NULL 

 
 



DATABASE MANAGEMENT SYSTEMS Page 54  

Marry NULL 

 

 

 

 

Division Operator in SQL 

Division Operator (÷): Division operator A÷B can be applied if and only if: 

 Attributes of B is proper subset of Attributes of A. 

 The relation returned by division operator will have attributes = (All attributes of A – 

All Attributes of B) 

 The relation returned by division operator will return those tuples from relation A 

which are associated to every B’s tuple. 

 
The division operator is used when we have to evaluate queries which contain the 

keyword ALL. 

 

Table 1: Course_Taken → It consists of the names of Students against the courses that they 

have taken. 

 
Student_Name 

 
Course 

 
Robert 

 
Databases 

 
 



DATABASE MANAGEMENT SYSTEMS Page 55  

 
Robert 

 
Programming Languages 

 
David 

 
Databases 

 
David 

 
Operating Systems 

 
Hannah 

 
Programming Languages 

 
Hannah 

 
Machine Learning 

 
Tom 

 
Operating Systems 

 

 

 

Table 2: Course_Required → It consists of the courses that one is required to take in order 

to graduate. 

 
Course 

 
Databases 

 
Programming Languages 

 

 
1. Find all the students 

 
Create a set of all students that have taken courses. This can be done easily using the 

following command. 

 



DATABASE MANAGEMENT SYSTEMS Page 56  

CREATE TABLE AllStudents AS SELECT DISTINCT Student_Name FROM 

Course_Taken 

This command will return the table AllStudents, as the resultset: 
 

 
 

 

 

 

 
Student_name 

 
Robert 

 
David 

 
Hannah 

 
Tom 

 

2. Find all the students and the courses required to graduate 

 
Next, we will create a set of students and the courses they need to graduate. We can express 

this in the form of Cartesian Product of AllStudents and Course_Required using the 

following command. 

CREATE table StudentsAndRequired AS 

SELECT AllStudents.Student_Name, Course_Required.Course 

FROM AllStudents, Course_Required 

Now the new resultset - table StudentsAndRequired will be: 
 
 

 

 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 57  

 
Student_Name 

 
Course 

 
Robert 

 
Databases 

 
Robert 

 
Programming Languages 

 
David 

 
Databases 

 
David 

 
Programming Languages 

 
Hannah 

 
Databases 

 
Hannah 

 
Programming Languages 

 
Tom 

 
Databases 

 
Tom 

 
Programming Languages 

 

Relational Calculus: 

 
 

Relational calculus is a non-procedural query language that tells the system what data to be 

retrieved but doesn’t tell how to retrieve it. Relational Calculus exists in two forms: 

 

1. Tuple Relational Calculus (TRC) 

2. Domain Relational Calculus (DRC) 

Tuple Relational Calculus (TRC) 



DATABASE MANAGEMENT SYSTEMS Page 58  

Tuple relational calculus is used for selecting those tuples that satisfy the given condition. 

Table: Student 

 
 

First_Name Last_Name Age 

Ajeet Singh 30 
 

Chaitanya Singh 31  

Rajeev Bhatia 27  

Carl Pratap 28  

Lets write relational calculus queries. 

Query to display the last name of those students where age is greater than 30 
 

 
In the above query you can see two parts separated by | symbol. The second part is where we 

define the condition and in the first part we specify the fields which we want to display for 

the selected tuples. 

The result of the above query would be: 
 

Query to display all the details of students where Last name is ‘Singh’ 

 

 
Output: 

 

 

 
 

Ex: 

Table-1: Customer 
 

 

{ t | Student(t) AND t.Last_Name = 'Singh' } 

{ t.Last_Name | Student(t) AND t.age > 30 } 

Last_Name 

Singh 

First_Name Last_Name Age 

Ajeet Singh 30 

Chaitanya Singh 31 



DATABASE MANAGEMENT SYSTEMS Page 59  

Customer name Street City 

 

Saurabh 
 

A7 
 

Patiala 

Mehak B6 Jalandhar 

Sumiti D9 Ludhiana 

Ria A5 Patiala 

Table-2: Branch 
 

Branch name Branch city 

 

ABC 
 

Patiala 

DEF Ludhiana 

GHI Jalandhar 

 
Table-3: Account 

 

Account number Branch name Balance 

1111 ABC 50000 

1112 DEF 10000 

1113 GHI 9000 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 60  

Account number Branch name Balance 

 

1114 
 

ABC 
 

7000 

Table-4: Loan 
 

Loan number Branch name Amount 

L33 ABC 10000 

L35 DEF 15000 

L49 GHI 9000 

L98 DEF 65000 

Table-5: Borrower 
 

Customer name Loan number 

Saurabh L33 

 

Mehak 
 

L49 

Ria L98 

 
Table-6: Depositor 

 

Customer name Account number 

 

Saurabh 
 

1111 

 

 



DATABASE MANAGEMENT SYSTEMS Page 61  

Customer name Account number 

Mehak 1113 

Sumiti 1114 

 

Queries-1: Find the loan number, branch, amount of loans of greater than or equal to 

10000 amount. 

 
{t| t ∈ loan 𝖠 t[amount]>=10000} 

Resulting relation: 
 

Loan number Branch name Amount 

L33 ABC 10000 

L35 DEF 15000 

L98 DEF 65000 

Domain Relational Calculus (DRC) 

In domain relational calculus the records are filtered based on the domains. 

Again we take the same table to understand how DRC works. 

Table: Student 
 

First_Name Last_Name Age 

Ajeet Singh 30 
 

Chaitanya Singh 31  

Rajeev Bhatia 27  

Carl Pratap 28  

Query to find the first name and age of students where student age is greater than 27 
 

 

{< First_Name, Age > | ∈ Student 𝖠 Age > 27} 



DATABASE MANAGEMENT SYSTEMS Page 62  

Note: 

The symbols used for logical operators are: 𝖠 for AND, ∨ for OR and ┓ for NOT. 

Output: 

 

 

 

 
SQL Basic Structure 

 
1. Basic structure of an SQL expression consists of select, from and where clauses. 

o select clause lists attributes to be copied - corresponds to relational 

algebra project. 

o from clause corresponds to Cartesian product - lists relations to be used. 

o where clause corresponds to selection predicate in relational algebra. 

 
The SELECT statement is used to select data from a database. 

 
The data returned is stored in a result table, called the result-set. 

To fetch the entire table or all the fields in the table: 

SELECT * FROM table_name; 

To fetch individual column data 

SELECT column1,column2 FROM table_name 
 

WHERE SQL clause 
 

 
 

WHERE clause is used to specify/apply any condition while retrieving, updating or deleting 

data from a table. This clause is used mostly with SELECT, UPDATE and DELETEquery. 

The basic syntax of the SELECT statement with the WHERE clause is as shown below. 

SELECT column1, column2, columnN 

FROM table_name 
 

First_Name Age 

Ajeet 30 

Chaitanya 31 

Carl 28 



DATABASE MANAGEMENT SYSTEMS Page 63  

WHERE [condition] 

 
Example 

 

Consider the CUSTOMERS table having the following records − 
 

The following code is an example which would fetch the ID, Name and Salary fields from 

the CUSTOMERS table, where the salary is greater than 2000 − 

 

This would produce the following result − 

+ + + + 

| ID | NAME | SALARY | 

+ + + + 

| 4 | Chaitali | 6500.00 | 

| 5 | Hardik   | 8500.00 | 

| 6 | Komal | 4500.00 | 

| 7 | Muffy | 10000.00 | 

+ + + + 
 

 

 

 

 

 

 
 

SQL> SELECT ID, NAME, SALARY 

FROM CUSTOMERS 

WHERE SALARY > 2000; 

+ + + + + + 

| ID | NAME | AGE | ADDRESS | SALARY | 

+ + + + + + 

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 | 

| 2 | Khilan | 25 | Delhi 

| 3 | kaushik | 23 | Kota 

| 4 | Chaitali | 25 | Mumbai 

| 5 | Hardik   | 27 | Bhopal 

| 6 | Komal | 22 | MP 

| 7 | Muffy | 24 | Indore 

| 1500.00 | 

| 2000.00 | 

| 6500.00 | 

| 8500.00 | 

| 4500.00 | 

| 10000.00 | 

+ + + + + + 



DATABASE MANAGEMENT SYSTEMS Page 64  

 

From clause: 

 
 

From clause can be used to specify a sub-query expression in SQL. The relation produced 

by the sub-query is then used as a new relation on which the outer query is applied. 

 Sub queries in the from clause are supported by most of the SQL implementations. 

 The correlation variables from the relations in from clause cannot be used in the sub- 

queries in the from clause. 

 
Syntax: 

SELECT column1, column2 FROM 

(SELECT column_x as C1, column_y FROM table WHERE PREDICATE_X) 

as table2 

WHERE PREDICATE; 

 

 
 

SET Operations 

SQL supports few Set operations which can be performed on the table data. These are used to 

get meaningful results from data stored in the table, under different special conditions. 

In this tutorial, we will cover 4 different types of SET operations, along with example: 

 
1. UNION 

2. UNION ALL 

3. INTERSECT 

4. MINUS 

 

 

 

1. Union 

 
o The SQL Union operation is used to combine the result of two or more SQL SELECT 

queries. 

o In the union operation, all the number of datatype and columns must be same in both 

the tables on which UNION operation is being applied. 

o The union operation eliminates the duplicate rows from its resultset. 
 



DATABASE MANAGEMENT SYSTEMS Page 65  

Syntax 

SELECT column_name FROM table1 

UNION 

SELECT column_name FROM table2; 

 

 
 

The First table 
 

ID NAME 

1 Jack 

2 Harry 

3 Jackson 

 

The Second table 
 

ID NAME 

3 Jackson 

4 Stephan 

5 David 

 

Union SQL query will be: 

SELECT * FROM First 

UNION 

SELECT * FROM Second; 

 
The resultset table will look like: 

 
 

 
 



DATABASE MANAGEMENT SYSTEMS Page 66  

ID NAME 

1 Jack 

2 Harry 

3 Jackson 

4 Stephan 

5 David 

 

2. Union All 

 
Union All operation is equal to the Union operation. It returns the set without removing 

duplication and sorting the data. 

 
Syntax: 

SELECT column_name FROM table1 

UNION ALL 

SELECT column_name FROM table2; 

Example: Using the above First and Second table. 

Union All query will be like: 

SELECT * FROM First 

UNION ALL 

SELECT * FROM Second; 

 
The resultset table will look like: 

 

 

 
 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 67  

 

-ID NAME 

1 Jack 

2 Harry 

3 Jackson 

3 Jackson 

4 Stephan 

5 David 

 

3. Intersect 

 
o It is used to combine two SELECT statements. The Intersect operation returns the 

common rows from both the SELECT statements. 

o In the Intersect operation, the number of datatype and columns must be the same. 

o It has no duplicates and it arranges the data in ascending order by default. 

 
Syntax 

SELECT column_name FROM table1 

INTERSECT 

SELECT column_name FROM table2; 

 
Example: 

 
Using the above First and Second table. 

 
Intersect query will be: 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 68  

SELECT * FROM First 

INTERSECT 

SELECT * FROM Second; 

 
The resultset table will look like: 

 

ID NAME 

3 Jackson 

 

4. Minus 

 
o It combines the result of two SELECT statements. Minus operator is used to display 

the rows which are present in the first query but absent in the second query. 

o It has no duplicates and data arranged in ascending order by default. 

 
Syntax: 

SELECT column_name FROM table1 

MINUS 

SELECT column_name FROM table2; 

 
Example 

 
Using the above First and Second table. 

 
Minus query will be: 

SELECT * FROM First 

MINUS 

SELECT * FROM Second; 

 
The resultset table will look like: 

 
 

 

 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 69  

 

ID NAME 

1 Jack 

2 Harry 

 

Aggregate functions in SQL 

o SQL aggregation function is used to perform the calculations on multiple rows of a 

single column of a table. It returns a single value. 

o It is also used to summarize the data. 

Aggregate Functions 

1) Count() 

2) Sum() 

3) Avg() 

4) Min() 

5) Max() 

 
1. COUNT FUNCTION 

 
o COUNT function is used to Count the number of rows in a database table. It can work 

on both numeric and non-numeric data types. 

o COUNT function uses the COUNT(*) that returns the count of all the rows in a 

specified table. COUNT(*) considers duplicate and Null. 

Count(*): Returns total number of records 
 

 

 

 

 

 

 

 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 70  

PRODUCT_MAST 
 

PRODUCT COMPANY QTY RATE COST 

Item1 Com1 2 10 20 

Item2 Com2 3 25 75 

Item3 Com1 2 30 60 

Item4 Com3 5 10 50 

Item5 Com2 2 20 40 

Item6 Cpm1 3 25 75 

Item7 Com1 5 30 150 

Item8 Com1 3 10 30 

Item9 Com2 2 25 50 

Item10 Com3 4 30 120 

 

 
Example: COUNT() 

SELECT COUNT(*) FROM PRODUCT_MAST; 

 
Output: 

 10  

 
Example: COUNT with WHERE 

SELECT COUNT(*) 

FROM PRODUCT_MAST; 

WHERE RATE>=20; 

 

Output:7 

 
Example: COUNT() with DISTINCT 

 



DATABASE MANAGEMENT SYSTEMS Page 71  

SELECT COUNT(DISTINCT COMPANY) 

FROM PRODUCT_MAST; 

 

Output: 
 

2. SUM Function 

 
Sum function is used to calculate the sum of all selected columns. It works on numeric fields 

only. 

 
Syntax 

SUM() 

or 

SUM( [ALL|DISTINCT] expression ) 

 
Example: SUM() 

SELECT SUM(COST) 

FROM PRODUCT_MAST; 

 
Output: 

 

 

 
Example: SUM() with WHERE 

SELECT SUM(COST) 

FROM PRODUCT_MAST 

WHERE QTY>3; 

 

Output: 
 

 

3. AVG function 

 
The AVG function is used to calculate the average value of the numeric type. AVG function 

returns the average of all non-Null values. 

 

 

3 

670 

320 



DATABASE MANAGEMENT SYSTEMS Page 72  

Syntax 

AVG() 

 
Example: 

SELECT AVG(COST) 

FROM PRODUCT_MAST; 

 
Output: 

 

 

4. MAX Function 

 
MAX function is used to find the maximum value of a certain column. This function 

determines the largest value of all selected values of a column. 

 

Syntax: MAX() 

 
Example: 

SELECT MAX(RATE) 

FROM PRODUCT_MAST; 

 

5. MIN Function 

 
MIN function is used to find the minimum value of a certain column. This function 

determines the smallest value of all selected values of a column. 

 

Syntax:MIN() ) 

 
Example: SELECT MIN(RATE) 

FROM PRODUCT_MAST; 

 
Output:10 

 
GROUP BY Statement 

 
The GROUP BY statement groups rows that have the same values into summary rows, like 

"find the number of customers in each country". 

 

67.00 

30 



DATABASE MANAGEMENT SYSTEMS Page 73  

The GROUP BY statement is often used with aggregate functions (COUNT, MAX, MIN, 

SUM, AVG) to group the result-set by one or more columns. 

 

GROUP BY Syntax 

 
SELECT column_name(s) 

FROM table_name 

WHERE condition 

GROUP BY column_name(s) 

ORDER BY column_name(s); 
 

 

 
 

 
 

Example: 

 Group By single column: Group By single column means, to place all the rows with 

same value of only that particular column in one group. Consider the query as shown 

below: 

 SELECT NAME, SUM(SALARY) FROM Employee 

 GROUP BY NAME; 

The above query will produce the below output: 
 

 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 74  

 
 
 

Group By multiple columns: Group by multiple column is say for example, GROUP BY 

column1, column2. This means to place all the rows with same values of both the 

columns column1 and column2 in one group. Consider the below query: 

SELECT SUBJECT, YEAR, Count(*) 

FROM Student 

GROUP BY SUBJECT, YEAR; 
 

 

HAVING Clause: 

 
 

We know that WHERE clause is used to place conditions on columns but what if we want 

to place conditions on groups? 

This is where HAVING clause comes into use. We can use HAVING clause to place 

conditions to decide which group will be the part of final result-set. Also we can not use 

the aggregate functions like SUM(), COUNT() etc. with WHERE clause. So we have to 

use HAVING clause if we want to use any of these functions in the conditions. 

Syntax: 

SELECT column1, function_name(column2) 

FROM table_name 

WHERE condition 

GROUP BY column1, column2 

HAVING condition 

ORDER BY column1, column2; 

function_name: Name of the function used for example, SUM() , AVG(). 
 



DATABASE MANAGEMENT SYSTEMS Page 75  

table_name: Name of the table. 

condition: Condition used. 

Example: 

SELECT NAME, SUM(SALARY) FROM Employee 

GROUP BY NAME 

HAVING SUM(SALARY)>3000; 

 

 
 

Example 
 

Consider the CUSTOMERS table having the following records. 
 

Following is an example, which would display a record for a similar age count that would be 

more than or equal to 2. 

 

This would produce the following result − 

+ + + + + + 

| ID | NAME | AGE | ADDRESS | SALARY | 

+ + + + + + 

| 2 | Khilan | 25 | Delhi | 1500.00 | 
 

 

SQL > SELECT ID, NAME, AGE, ADDRESS, SALARY 

FROM CUSTOMERS 

GROUP BY age 

HAVING COUNT(age) >= 2; 

+ + + + + + 

| ID | NAME | AGE | ADDRESS | SALARY | 

+ + + + + + 

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 | 

| 2 | Khilan | 25 | Delhi 

| 3 | kaushik | 23 | Kota 

| 4 | Chaitali | 25 | Mumbai 

| 5 | Hardik   | 27 | Bhopal 

| 6 | Komal | 22 | MP 

| 7 | Muffy | 24 | Indore 

| 1500.00 | 

| 2000.00 | 

| 6500.00 | 

| 8500.00 | 

| 4500.00 | 

| 10000.00 | 

+ + + + + + 



DATABASE MANAGEMENT SYSTEMS Page 76  

+ + + + + + 

Nested Queries 

 
 

In nested queries, a query is written inside a query. The result of inner query is used in 

execution of outer query. We will use STUDENT, COURSE, 

STUDENT_COURSE tables for understanding nested queries. 

STUDENT 
 

S_ID S_NAME S_ADDRESS S_PHONE S_AGE 

S1 RAM DELHI 9455123451 18 

S2 RAMESH GURGAON 9652431543 18 

S3 SUJIT ROHTAK 9156253131 20 

S4 SURESH DELHI 9156768971 18 

 
COURSE 

 

C_ID C_NAME 

C1 DSA 

C2 Programming 

C3 DBMS 

 
STUDENT_COURSE 

 

S_ID C_ID 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 77  

S1 C1 

S1 C3 

S2 C1 

S3 C2 

S4 C2 

S4 C3 

 

 

Example 

 
Consider the CUSTOMERS table having the following records − 

 

Now, let us check the following subquery with a SELECT statement. 
 

 

+ + + + + + 

| ID | NAME | AGE | ADDRESS | SALARY | 

+ + + + + + 

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 | 

| 2 | Khilan | 25 | Delhi 

| 3 | kaushik | 23 | Kota 

| 4 | Chaitali | 25 | Mumbai 

| 5 | Hardik   | 27 | Bhopal 

| 6 | Komal | 22 | MP 

| 7 | Muffy | 24 | Indore 

| 1500.00 | 

| 2000.00 | 

| 6500.00 | 

| 8500.00 | 

| 4500.00 | 

| 10000.00 | 

+ + + + + + 

SQL> SELECT * 

FROM CUSTOMERS 

WHERE ID IN (SELECT ID 



DATABASE MANAGEMENT SYSTEMS Page 78  

 
 

 
 

 

This would produce the following result. 

 

+ + + + + + 

| ID | NAME | AGE | ADDRESS | SALARY | 

+ + + + + + 

| 4 | Chaitali | 25 | Mumbai | 6500.00 | 

| 5 | Hardik   | 27 | Bhopal | 8500.00 | 

| 7 | Muffy | 24 | Indore | 10000.00 | 

+ + + + + + 

 

Students 
 
 

id name class_id GPA 

1 Jack Black 3 3.45 

2 Daniel White 1 3.15 

3 Kathrine Star 1 3.85 

4 Helen Bright 2 3.10 

5 Steve May 2 2.40 

 

 

 

 

FROM CUSTOMERS 

WHERE SALARY > 4500) ; 



DATABASE MANAGEMENT SYSTEMS Page 79  

Teachers 
 
 

id name subject class_id monthly_salary 

1 Elisabeth Grey History 3 2,500 

2 Robert Sun Literature [NULL] 2,000 

3 John Churchill English 1 2,350 

4 Sara Parker Math 2 3,000 

 

Classes 
 
 

id grade teacher_id number_of_students 

1 10 3 21 

2 11 4 25 

3 12 1 28 

 

 

SELECT * 

FROM students 

WHERE GPA > ( 

SELECT AVG(GPA) 

FROM students); 

 



DATABASE MANAGEMENT SYSTEMS Page 80  

result: 
 
 

id name class_id GPA 

1 Jack Black 3 3.45 

3 Kathrine Star 1 3.85 

SELECT AVG(number_of_students) 

FROM classes 

WHERE teacher_id IN ( 

SELECT id 

FROM teachers 

WHERE subject = 'English' OR subject = 'History'); 

 

 
Views in SQL 

o Views in SQL are considered as a virtual table. A view also contains rows and 

columns. 

o To create the view, we can select the fields from one or more tables present in the 

database. 

o A view can either have specific rows based on certain condition or all the rows of a 

table. 

 
Sample table: 

Student_Detail 

 
 

STU_ID NAME ADDRESS 

1 Stephan Delhi 

 

 



DATABASE MANAGEMENT SYSTEMS Page 81  

2 Kathrin Noida 

3 David Ghaziabad 

4 Alina Gurugram 

 

Student_Marks 
 

STU_ID NAME MARKS AGE 

1 Stephan 97 19 

2 Kathrin 86 21 

3 David 74 18 

4 Alina 90 20 

5 John 96 18 

1. Creating view 

 
A view can be created using the CREATE VIEW statement. We can create a view from a 

single table or multiple tables. 

 
Syntax: 

CREATE VIEW view_name AS 

SELECT column1, column2..... 

FROM table_name 

WHERE condition; 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 82  

2. Creating View from a single table 

 
Query: 

CREATE VIEW DetailsView AS 

SELECT NAME, ADDRESS 

FROM Student_Details 

WHERE STU_ID < 4; 

 

Just like table query, we can query the view to view the data. 

SELECT * FROM DetailsView; 

 
Output: 

 

 

 
 

NAME ADDRESS 

Stephan Delhi 

Kathrin Noida 

David Ghaziabad 

 

3. Creating View from multiple tables 

 
View from multiple tables can be created by simply include multiple tables in the SELECT 

statement. 

 

In the given example, a view is created named MarksView from two tables Student_Detail 

and Student_Marks. 

 
Query: 

CREATE VIEW MarksView AS 

SELECT Student_Detail.NAME, Student_Detail.ADDRESS, Student_Marks.MARKS 

FROM Student_Detail, Student_Mark 

WHERE Student_Detail.NAME = Student_Marks.NAME; 

 



DATABASE MANAGEMENT SYSTEMS Page 83  

To display data of View MarksView: 

SELECT * FROM MarksView; 

 

 

NAME ADDRESS MARKS 

Stephan Delhi 97 

Kathrin Noida 86 

David Ghaziabad 74 

Alina Gurugram 90 

 

4. Deleting View 

 
A view can be deleted using the Drop View statement. 

 
Syntax 

1. DROP VIEW view_name; 

 
Example: 

 
If we want to delete the View MarksView, we can do this as: 

1. DROP VIEW MarksView; 

 
 

Uses of a View : 

A good database should contain views due to the given reasons: 

1. Restricting data access – 

Views provide an additional level of table security by restricting access to a 

predetermined set of rows and columns of a table. 

2. Hiding data complexity – 

A view can hide the complexity that exists in a multiple table join. 
 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 84  

3. Simplify commands for the user – 

Views allows the user to select information from multiple tables without requiring the 

users to actually know how to perform a join. 

4. Store complex queries – 

Views can be used to store complex queries. 

5. Rename Columns – 

Views can also be used to rename the columns without affecting the base tables 

provided the number of columns in view must match the number of columns specified 

in select statement. Thus, renaming helps to to hide the names of the columns of the 

base tables. 

6. Multiple view facility – 

Different views can be created on the same table for different users. 

 
 

Trigger: A trigger is a stored procedure in database which automatically invokes 

whenever a special event in the database occurs. For example, a trigger can be invoked 

when a row is inserted into a specified table or when certain table columns are being 

updated. 

Syntax: 

create trigger [trigger_name] 

[before | after] 

{insert | update | delete} 

on [table_name] 

[for each row] 

[trigger_body] 

Explanation of syntax: 

 
1. create trigger [trigger_name]: Creates or replaces an existing trigger with the 

trigger_name. 

2. [before | after]: This specifies when the trigger will be executed. 

3. {insert | update | delete}: This specifies the DML operation. 

4. on [table_name]: This specifies the name of the table associated with the trigger. 

5. [for each row]: This specifies a row-level trigger, i.e., the trigger will be executed for 

each row being affected. 

6. [trigger_body]: This provides the operation to be performed as trigger is fired 
 



DATABASE MANAGEMENT SYSTEMS Page 85  

BEFORE and AFTER of Trigger: 

BEFORE triggers run the trigger action before the triggering statement is run. 

AFTER triggers run the trigger action after the triggering statement is run. 

Example: 

Given Student Report Database, in which student marks assessment is recorded. In such 

schema, create a trigger so that the total and average of specified marks is automatically 

inserted whenever a record is insert. 

Here, as trigger will invoke before record is inserted so, BEFORE Tag can be used. 

Suppose the database Schema – 

mysql> desc Student; 

+ -+    + -+ -+ + + 

| Field | Type | Null | Key | Default | Extra | 

+ -+ + -+ -+ + + 

| tid | int(4) | NO   | PRI | NULL | auto_increment | 

| name | varchar(30) | YES | | NULL | | 

| subj1 | int(2) | YES | | NULL | | 

| subj2 | int(2) | YES | | NULL | | 

| subj3 | int(2) | YES | | NULL | | 

| total | int(3) | YES | | NULL | | 

| per | int(3) | YES | | NULL | | 

+ -+ + -+ -+ + + 

7 rows in set (0.00 sec) 

SQL Trigger to problem statement. 

create trigger stud_marks 

before INSERT 

on 

Student 

for each row 

set Student.total = Student.subj1 + Student.subj2 + Student.subj3, Student.per = 

Student.total * 60 / 100; 

Above SQL statement will create a trigger in the student database in which whenever 

subjects marks are entered, before inserting this data into the database, trigger will 

compute those two values and insert with the entered values. i.e., 

mysql> insert into Student values(0, "ABCDE", 20, 20, 20, 0, 0); 



DATABASE MANAGEMENT SYSTEMS Page 86  

Query OK, 1 row affected (0.09 sec) 

 
 

mysql> select * from Student; 

+ +- + -+ +- + + + 

| tid | name | subj1 | subj2 | subj3 | total | per | 

+ +- + -+ +- + + + 

| 100 | ABCDE | 20 | 20 | 20 | 60 | 36 | 

+ +- + -+ +- + + + 

1 row in set (0.00 sec) 

In this way trigger can be creates and executed in the databases. 

Attention reader! Don’t stop learning now. Get hold of all the important CS Theory 

concepts for SDE interviews with the CS Theory Course at a student-friendly price and 

become industry ready. 

 

Advantages of Triggers 

 
These are the following advantages of Triggers: 

o Trigger generates some derived column values automatically 

o Enforces referential integrity 

o Event logging and storing information on table access 

o Auditing 

o Synchronous replication of tables 

o Imposing security authorizations 

o Preventing invalid transactions 

Creating a trigger: 

Syntax for creating trigger: 

CREATE [OR REPLACE ] TRIGGER trigger_name 

{BEFORE | AFTER | INSTEAD OF } 

{INSERT [OR] | UPDATE [OR] | DELETE} 

[OF col_name] 

ON table_name 

[REFERENCING OLD AS o NEW AS n] 
 

https://practice.geeksforgeeks.org/courses/SDE-theory?vC=1


DATABASE MANAGEMENT SYSTEMS Page 87  

[FOR EACH ROW] 

WHEN (condition) 

DECLARE 

Declaration-statements 

BEGIN 

Executable-statements 

EXCEPTION 

Exception-handling-statements 

END; 

 
Here, 

o CREATE [OR REPLACE] TRIGGER trigger_name: It creates or replaces an existing 

trigger with the trigger_name. 

o {BEFORE | AFTER | INSTEAD OF} : This specifies when the trigger would be 

executed. The INSTEAD OF clause is used for creating trigger on a view. 

o {INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the DML operation. 

o [OF col_name]: This specifies the column name that would be updated. 

o [ON table_name]: This specifies the name of the table associated with the trigger. 

o [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old 

values for various DML statements, like INSERT, UPDATE, and DELETE. 

o [FOR EACH ROW]: This specifies a row level trigger, i.e., the trigger would be 

executed for each row being affected. Otherwise the trigger will execute just once 

when the SQL statement is executed, which is called a table level trigger. 

o WHEN (condition): This provides a condition for rows for which the trigger would 

fire. This clause is valid only for row level triggers. 

 
PL/SQL Trigger Example 

 
Let's take a simple example to demonstrate the trigger. In this example, we are using the 

following CUSTOMERS table: 

 
Create table and have records: 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 88  

ID NAME AGE ADDRESS SALARY 

1 Ramesh 23 Allahabad 20000 

2 Suresh 22 Kanpur 22000 

3 Mahesh 24 Ghaziabad 24000 

4 Chandan 25 Noida 26000 

5 Alex 21 Paris 28000 

6 Sunita 20 Delhi 30000 

 

Create trigger: 

 
Let's take a program to create a row level trigger for the CUSTOMERS table that would fire 

for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This 

trigger will display the salary difference between the old values and new values: 

CREATE OR REPLACE TRIGGER display_salary_changes 

BEFORE DELETE OR INSERT OR UPDATE ON customers 

FOR EACH ROW 

WHEN (NEW.ID > 0) 

DECLARE 

sal_diff number; 

BEGIN 

sal_diff := :NEW.salary - :OLD.salary; 

dbms_output.put_line('Old salary: ' || :OLD.salary); 

dbms_output.put_line('New salary: ' || :NEW.salary); 

dbms_output.put_line('Salary difference: ' || sal_diff); 

END; 

 

 
 

After the execution of the above code at SQL Prompt, it produces the following result. 
 
 



DATABASE MANAGEMENT SYSTEMS Page 89  

 
 

Check the salary difference by procedure: 

 
Use the following code to get the old salary, new salary and salary difference after the trigger 

created. 

DECLARE 

total_rows number(2); 

BEGIN 

UPDATE customers 

SET salary = salary + 5000; 

IF sql%notfound THEN 

dbms_output.put_line('no customers updated'); 

ELSIF sql%found THEN 

total_rows := sql%rowcount; 

dbms_output.put_line( total_rows || ' customers updated '); 

END IF; 

END; 

/ Output: 
 

 

Trigger created. 

Old salary: 20000 

New salary: 25000 

Salary difference: 5000 

Old salary: 22000 

New salary: 27000 

Salary difference: 5000 

Old salary: 24000 

New salary: 29000 

Salary difference: 5000 

Old salary: 26000 

New salary: 31000 

Salary difference: 5000 

Old salary: 28000 

New salary: 33000 

Salary difference: 5000 



DATABASE MANAGEMENT SYSTEMS Page 90  

 
 

Note: As many times you executed this code, the old and new both salary is incremented by 

5000 and hence the salary difference is always 5000. 

 

After the execution of above code again, you will get the following result. 
 

Important Points 

 
Following are the two very important point and should be noted carefully. 

o OLD and NEW references are used for record level triggers these are not avialable for 

table level triggers. 

 

 

Old salary: 30000 

New salary: 35000 

Salary difference: 5000 

6 customers updated 

Old salary: 25000 

New salary: 30000 

Salary difference: 5000 

Old salary: 27000 

New salary: 32000 

Salary difference: 5000 

Old salary: 29000 

New salary: 34000 

Salary difference: 5000 

Old salary: 31000 

New salary: 36000 

Salary difference: 5000 

Old salary: 33000 

New salary: 38000 

Salary difference: 5000 

Old salary: 35000 

New salary: 40000 

Salary difference: 5000 

6 customers updated 



DATABASE MANAGEMENT SYSTEMS Page 91  

o If you want to query the table in the same trigger, then you should use the AFTER 

keyword, because triggers can query the table or change it again only after the initial 

changes are applied and the table is back in a consistent state. 

Procedure 

 
The PL/SQL stored procedure or simply a procedure is a PL/SQL block which performs one 

or more specific tasks. It is just like procedures in other programming languages. 

 

The procedure contains a header and a body. 

o Header: The header contains the name of the procedure and the parameters or 

variables passed to the procedure. 

o Body: The body contains a declaration section, execution section and exception 

section similar to a general PL/SQL block. 

 

How to pass parameters in procedure: 

 
When you want to create a procedure or function, you have to define parameters .There is 

three ways to pass parameters in procedure: 

1. IN parameters: The IN parameter can be referenced by the procedure or function. 

The value of the parameter cannot be overwritten by the procedure or the function. 

2. OUT parameters: The OUT parameter cannot be referenced by the procedure or 

function, but the value of the parameter can be overwritten by the procedure or 

function. 

3. INOUT parameters: The INOUT parameter can be referenced by the procedure or 

function and the value of the parameter can be overwritten by the procedure or 

function. 

 

 A procedure may or may not return any value.  

 
PL/SQL Create Procedure 

 
Syntax for creating procedure: 

CREATE [OR REPLACE] PROCEDURE procedure_name 

[ (parameter [,parameter]) ] 

IS 
 
 



DATABASE MANAGEMENT SYSTEMS Page 92  

[declaration_section] 

BEGIN 

executable_section 

[EXCEPTION 

exception_section] 

END [procedure_name]; 

Create procedure example 

 
In this example, we are going to insert record in user table. So you need to create user table 

first. 

 
Table creation: 

create table user(id number(10) primary key,name varchar2(100)); Now write the 

procedure code to insert record in user table. 

 

Procedure Code: 

create or replace procedure "INSERTUSER" 

(id IN NUMBER, 

name IN VARCHAR2) 

is 

begin 

insert into user values(id,name); 

end; 

/ 

 
Output: 

 Procedure created.  

PL/SQL program to call procedure 

Let's see the code to call above created procedure. 

BEGIN 

insertuser(101,'Rahul'); 

dbms_output.put_line('record inserted successfully'); 

END; 

/ 
 



DATABASE MANAGEMENT SYSTEMS Page 93  

Now, see the "USER" table, you will see one record is inserted. 
 

ID Name 

101 Rahul 

PL/SQL Drop Procedure 

 
Syntax for drop procedure 

DROP PROCEDURE procedure name; 

 
Example of drop procedure 

DROP PROCEDURE pro1; 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 94  

UNIT- III 

 
Normalization – Introduction, Non loss decomposition and functional dependencies, 

First, Second, and third normal forms – dependency preservation, Boyce/Codd normal 

form. Higher Normal Forms - Introduction, Multi-valued dependencies and Fourth 

normal form, Join dependencies and Fifth normal form 

Decomposition: the process of breaking up or dividing a single relation into two or more sub 

relations is called as decomposition of a relation. 

 

Decomposition in DBMS removes redundancy, anomalies and inconsistencies from a 

database by dividing the table into multiple tables. 

 

 

 

 
Lossless Decomposition 

 
o If the information is not lost from the relation that is decomposed, then the 

decomposition will be lossless. 

o The lossless decomposition guarantees that the join of relations will result in the same 

relation as it was decomposed. 

o The relation is said to be lossless decomposition if natural joins of all the 

decomposition give the original relation. 

 
Example: 

 

 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 95  

o EMPLOYEE_DEPARTMENT table: 
 
 

EMP_ID EMP_NAME EMP_AGE EMP_CITY DEPT_ID DEPT_N 

AME 

22 Denim 28 Mumbai 827 Sales 

33 Alina 25 Delhi 438 Market 

ing 

46 Stephan 30 Bangalore 869 Financ 

e 

52 Katherine 36 Mumbai 575 Product 

ion 

60 Jack 40 Noida 678 Testing 

 

o The above relation is decomposed into two relations EMPLOYEE and 

DEPARTMENT 

o EMPLOYEE table: 
 
 

EMP_ID EMP_NAME EMP_AGE EMP_CITY 

22 Denim 28 Mumbai 

33 Alina 25 Delhi 

46 Stephan 30 Bangalore 

52 Katherine 36 Mumbai 

60 Jack 40 Noida 

 
 



DATABASE MANAGEMENT SYSTEMS Page 96  

o DEPARTMENT table 

o Now, when these two relations are joined on the common column "EMP_ID", then 

the resultant relation will look like: 

Employee ⋈ Department 
 

 

EMP_I 

D 

EMP_NAM 

E 

EMP_AG 

E 

EMP_CIT 

Y 

DEPT_I 

D 

DEPT_NAM 

E 

22 Denim 28 Mumbai 827 Sales 

33 Alina 25 Delhi 438 Marketing 

46 Stephan 30 Bangalore 869 Finance 

52 Katherine 36 Mumbai 575 Production 

60 Jack 40 Noida 678 Testing 

 

o Hence, the decomposition is Lossless join decomposition. 

 
Lossy Decomposition 

 

As the name suggests, when a relation is decomposed into two or more relational schemas, 

the loss of information is unavoidable when the original relation is retrieved. 

Let us see an example − 

 
<EmpInfo> 

 

Emp_ID Emp_Name Emp_Age Emp_Location Dept_ID Dept_Name 

E001 Jacob 29 Alabama Dpt1 Operations 

E002 Henry 32 Alabama Dpt2 HR 

E003 Tom 22 Texas Dpt3 Finance 

 
 



DATABASE MANAGEMENT SYSTEMS Page 97  

Decompose the above table into two tables − 

 
<EmpDetails> 

 
Emp_ID Emp_Name Emp_Age Emp_Location 

E001 Jacob 29 Alabama 

E002 Henry 32 Alabama 

E003 Tom 22 Texas 

 

<DeptDetails> 

 

Dept_ID Dept_Name 

Dpt1 Operations 

Dpt2 HR 

Dpt3 Finance 

 

 
Now,   you won’t be able to join   the above tables, since Emp_ID isn’t part of 

the DeptDetails relation. 

Therefore, the above relation has lossy decomposition. 

 
Dependency Preserving 

 
o It is an important constraint of the database. 

o In the dependency preservation, at least one decomposed table must satisfy every 

dependency. 

o If a relation R is decomposed into relation R1 and R2, then the dependencies of R 

either must be a part of R1 or R2 or must be derivable from the combination of 

functional dependencies of R1 and R2. 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 98  

o For example, suppose there is a relation R (A, B, C, D) with functional dependency 

set (A->BC). The relational R is decomposed into R1(ABC) and R2(AD) which is 

dependency preserving because FD A->BC is a part of relation R1(ABC). 

 
Multivalued Dependency 

 
o Multivalued dependency occurs when two attributes in a table are independent of each 

other but, both depend on a third attribute. 

o A multivalued dependency consists of at least two attributes that are dependent on a 

third attribute that's why it always requires at least three attributes. 

 
Example: Suppose there is a bike manufacturer company which produces two colors(white 

and black) of each model every year. 

 

BIKE_MODEL MANUF_YEAR COLOR 

M2011 2008 White 

M2001 2008 Black 

M3001 2013 White 

M3001 2013 Black 

M4006 2017 White 

M4006 2017 Black 

 

Here columns COLOR and MANUF_YEAR are dependent on BIKE_MODEL and 

independent of each other. 

 

In this case, these two columns can be called as multivalued dependent on BIKE_MODEL. 

The representation of these dependencies is shown below: 

 

BIKE_MODEL → → MANUF_YEAR 

BIKE_MODEL → → COLOR 
 



DATABASE MANAGEMENT SYSTEMS Page 99  

This can be read as "BIKE_MODEL multidetermined MANUF_YEAR" and 

"BIKE_MODEL multidetermined COLOR". 

 

Normalization: Normalization is a process of organizing the data in database to avoid data 

redundancy, insertion anomaly, update anomaly & deletion anomaly. 

 

o Normalization is the process of organizing the data in the database. 

o Normalization is used to minimize the redundancy from a relation or set of relations. 

It is also used to eliminate the undesirable characteristics like Insertion, Update and 

Deletion Anomalies. 

o Normalization divides the larger table into the smaller table and links them using 

relationship. 

o The normal form is used to reduce redundancy from the database table. 

 
Anomalies in DBMS 

 
There are three types of anomalies that occur when the database is not normalized. These are 

– Insertion, update and deletion anomaly. 

 

Example: Suppose a manufacturing company stores the employee details in a table named 

employee that has four attributes: emp_id for storing employee’s id, emp_name for storing 

employee’s name, emp_address for storing employee’s address and emp_dept for storing the 

department details in which the employee works. At some point of time the table looks like 

this: 

 
Update anomaly: we have two rows for employee Rick as he belongs to two departments of 

the company. If we want to update the address of Rick then we have to update the same in 

two rows or the data will become inconsistent. If somehow, the correct address gets updated 

in one department but not in other then as per the database, Rick would be having two 

different addresses, which is not correct and would lead to inconsistent data. 

 
Insert anomaly: Suppose a new employee joins the company, who is under training and 

currently not assigned to any department then we would not be able to insert the data into the 

table if emp_dept field doesn’t allow nulls. 

 
 



DATABASE MANAGEMENT SYSTEMS Page 100  

Delete anomaly: Suppose, if at a point of time the company closes the department D890 then 

deleting the rows that are having emp_dept as D890 would also delete the information of 

employee Maggie since she is assigned only to this department. 

 
To overcome these anomalies we need to normalize the data. In the next section we will 

discuss about normalization. 

 
First Normal Form (1NF) 

 
o A relation will be 1NF if it contains an atomic value. 

o It states that an attribute of a table cannot hold multiple values. It must hold only 

single-valued attribute. 

o First normal form disallows the multi-valued attribute, composite attribute, and their 

combinations. 

 
Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute 

EMP_PHONE. 

 

EMPLOYEE table: 
 
 

EMP_ID EMP_NAME EMP_PHONE EMP_STATE 

14 John 7272826385, 

9064738238 

UP 

20 Harry 8574783832 Bihar 

12 Sam 7390372389, 

8589830302 

Punjab 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 101  

EMP_ID EMP_NAME EMP_PHONE EMP_STATE 

14 John 7272826385 UP 

14 John 9064738238 UP 

20 Harry 8574783832 Bihar 

12 Sam 7390372389 Punjab 

12 Sam 8589830302 Punjab 

 

 

Ex2:First normal form (1NF) 

 
As per the rule of first normal form, an attribute (column) of a table cannot hold multiple 

values. It should hold only atomic values. 

 
Example: Suppose a company wants to store the names and contact details of its employees. 

It creates a table that looks like this: 

 
 

emp_id emp_name emp_address emp_mobile 

101 Herschel New Delhi 8912312390 

 

 
102 

 

 
Jon 

 

 
Kanpur 

 
8812121212 

 

 
9900012222 

103 Ron Chennai 7778881212 

 



DATABASE MANAGEMENT SYSTEMS Page 102  

 

 
104 

 

 
Lester 

 

 
Bangalore 

 
9990000123 

 
8123450987 

 

 

 

Two employees (Jon & Lester) are having two mobile numbers so the company stored them 

in the same field as you can see in the table above. 

 
This table is not in 1NF as the rule says “each attribute of a table must have atomic (single) 

values”, the emp_mobile values for employees Jon & Lester violates that rule. 

 
To make the table complies with 1NF we should have the data like this: 

 

 

emp_id emp_name emp_address emp_mobile 

101 Herschel New Delhi 8912312390 

102 Jon Kanpur 8812121212 

102 Jon Kanpur 9900012222 

103 Ron Chennai 7778881212 

104 Lester Bangalore 9990000123 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 103  

104 Lester Bangalore 8123450987 

 

 
 

 

 

Example 3 – 

 

 
ID Name Courses 

 
 

 

1 A c1, c2 

 
2 E c3 

 
3 M C2, c3 

 
In the above table Course is a multi valued attribute so it is not in 1NF. 

Below Table is in 1NF as there is no multi valued attribute 

 
 

ID Name Course 
 

 

 
1 

 
A 

 
c1 

1 A c2 

2 E c3 

3 M c2 

3 M c3 
 

 

 

 

 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 104  

 

Second Normal Form (2NF) 

 
o In the 2NF, relational must be in 1NF. 

o In the second normal form, all non-key attributes are fully functional dependent on the 

primary key 

 

 

 
Second normal form (2NF) 

 
A table is said to be in 2NF if both the following conditions hold: 

 
 

 Table is in 1NF (First normal form) 

 No non-prime attribute is dependent on the proper subset of any candidate key of table. 

 
An attribute that is not part of any candidate key is known as non-prime attribute. 

 
 

Example: Let's assume, a school can store the data of teachers and the subjects they teach. In 

a school, a teacher can teach more than one subject. 

 

 

 
TEACHER table 

 
 

TEACHER_ID SUBJECT TEACHER_AGE 

25 Chemistry 30 

25 Biology 30 

47 English 35 

83 Math 38 

83 Computer 38 

 

 



DATABASE MANAGEMENT SYSTEMS Page 105  

In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER_ID 

which is a proper subset of a candidate key. That's why it violates the rule for 2NF. 

 

To convert the given table into 2NF, we decompose it into two tables: 

 
TEACHER_DETAIL table: 

 
 

TEACHER_ID TEACHER_AGE 

25 30 

47 35 

83 38 

 

TEACHER_SUBJECT table: 
 
 

TEACHER_ID SUBJECT 

25 Chemistry 

25 Biology 

47 English 

83 Math 

83 Computer 

 

 

 

 
 

Example: Suppose a school wants to store the data of teachers and the subjects they teach. 

They create a table that looks like this: Since a teacher can teach more than one subjects, the 

table can have multiple rows for a same teacher. 

 

 
 

 
 



DATABASE MANAGEMENT SYSTEMS Page 106  

teacher_id subject teacher_age 

111 Maths 38 

111 Physics 38 

222 Biology 38 

333 Physics 40 

333 Chemistry 40 

 

 

 

Candidate Keys: {teacher_id, subject} 

Non prime attribute: teacher_age 

 

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF 

because non prime attribute teacher_age is dependent on teacher_id alone which is a proper 

subset of candidate key. This violates the rule for 2NF as the rule says “no non-prime 

attribute is dependent on the proper subset of any candidate key of the table”. 

 
To make the table complies with 2NF we can break it in two tables like this: 

teacher_details table: 
 

 

 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 107  

teacher_id teacher_age 

111 38 

222 38 

333 40 

teacher_subject table: 
 

 

teacher_id subject 

111 Maths 

111 Physics 

222 Biology 

333 Physics 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 108  

333 Chemistry 

Now the tables comply with Second normal form (2NF). 

 

 

 

 
Second Normal Form – 

 
 a relation must be in first normal form and relation must not contain any partial 

dependency. 

 A relation is in 2NF if it has No Partial Dependency, i.e., no non-prime attribute 

(attributes which are not part of any candidate key) is dependent on any proper 

subset of any candidate key of the table. 

 
 Partial Dependency – If the proper subset of candidate key determines non-prime 

attribute, it is called partial dependency. 

 

 
Example 1 – Consider table-3 as following below. 

 
 

STUD_NO COURSE_NO COURSE_FEE 

1 C1 1000 
 

2 C2 1500 
 

1 C4 2000 
 

4 C3 1000 
 

4 C1 1000 
 

2 C5 2000 
 

Note that, there are many courses having the same course fee. } 

Here, 

COURSE_FEE cannot alone decide the value of COURSE_NO or STUD_NO; 
 

 
 



DATABASE MANAGEMENT SYSTEMS Page 109  

 

COURSE_FEE together with STUD_NO cannot decide the value of COURSE_NO; 

 

 
COURSE_FEE together with COURSE_NO cannot decide the value of STUD_NO; 

 

 
Hence, 

COURSE_FEE would be a non-prime attribute, as it does not belong to the one only 

candidate key {STUD_NO, COURSE_NO} ; 

 
 

But, COURSE_NO -> COURSE_FEE , i.e., COURSE_FEE is dependent on 

COURSE_NO, which is a proper subset of the candidate key. Non-prime attribute 

COURSE_FEE is dependent on a proper subset of the candidate key, which is a partial 

dependency and so this relation is not in 2NF. 

To convert the above relation to 2NF, 

 

 
we need to split the table into two tables such as : 

 

 
Table 1: STUD_NO, COURSE_NO 

 

 
Table 2: COURSE_NO, COURSE_FEE 

 

 

 
 

Table 1  Table 2  

STUD_NO COURSE_NO COURSE_NO COURSE_FEE 

1 C1 C1 1000  

2 C2 C2 1500  

1 C4 C3 1000  

4 C3 C4 2000  

4 C1 C5 2000  

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 110  

Example 2 – Consider following functional dependencies in relation R (A, B , C, D ) 

 
 

AB -> C [A and B together determine C] 

BC -> D [B and C together determine D] 

In the above relation, AB is the only candidate key and there is no partial dependency, 

i.e., any proper subset of AB doesn’t determine any non-prime attribute. 

 

 
Third Normal Form (3NF) 

 
o A relation will be in 3NF if it is in 2NF and not contain any transitive partial 

dependency. 

o 3NF is used to reduce the data duplication. It is also used to achieve the data integrity. 

o If there is no transitive dependency for non-prime attributes, then the relation must be 

in third normal form. 

 
A relation is in third normal form if it holds atleast one of the following conditions for every 

non-trivial function dependency X → Y. 

 

1. X is a super key. 

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key. 

 
Example: 

EMPLOYEE_DETAIL table: 

EMP_ID EMP_NAME EMP_ZIP EMP_STATE EMP_CITY 

222 Harry 201010 UP Noida 

333 Stephan 02228 US Boston 

444 Lan 60007 US Chicago 

 

 



DATABASE MANAGEMENT SYSTEMS Page 111  

555 Katharine 06389 UK Norwich 

666 John 462007 MP Bhopal 

 

Super key in the table above: 

 
1. {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP}... so on 

 

 
 

Candidate key: {EMP_ID} 

 
Non-prime attributes: In the given table, all attributes except EMP_ID are non- 

prime. 

 

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent 

on EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively 

dependent on super key(EMP_ID). It violates the rule of third normal form. 

 

That's why we need to move the EMP_CITY and EMP_STATE to the new 

<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key. 

 
EMPLOYEE table: 

 
 

EMP_ID EMP_NAME EMP_ZIP 

222 Harry 201010 

333 Stephan 02228 

444 Lan 60007 

555 Katharine 06389 

666 John 462007 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 112  

EMPLOYEE_ZIP table: 
 
 

EMP_ZIP EMP_STATE EMP_CITY 

201010 UP Noida 

02228 US Boston 

60007 US Chicago 

06389 UK Norwich 

462007 MP Bhopal 

 

 

 

 

 

Third Normal form (3NF) 

 
A table design is said to be in 3NF if both the following conditions hold: 

 

 Table must be in 2NF 

 Transitive functional dependency of non-prime attribute on any super key should be 

removed. 

 

An attribute that is not part of any candidate key is known as non-prime attribute. 
 
 

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each 

functional dependency X-> Y at least one of the following conditions hold: 

 
 X is a super key of table 

 Y is a prime attribute of table 

 
An attribute that is a part of one of the candidate keys is known as prime attribute. 

 

 

 

 
 

https://beginnersbook.com/2015/04/transitive-dependency-in-dbms/
https://beginnersbook.com/2015/04/candidate-key-in-dbms/
https://beginnersbook.com/2015/04/super-key-in-dbms/


DATABASE MANAGEMENT SYSTEMS Page 113  

Example: Suppose a company wants to store the complete address of each employee, they 

create a table named employee_details that looks like this: 

 
 

emp_id emp_name emp_zip emp_state emp_city emp_district 

1001 John 282005 UP Agra Dayal Bagh 

1002 Ajeet 222008 TN Chennai M-City 

1006 Lora 282007 TN Chennai Urrapakkam 

1101 Lilly 292008 UK Pauri Bhagwan 

1201 Steve 222999 MP Gwalior Ratan 

 

 

 

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on 

 

 

 
Candidate Keys: {emp_id} 

 

 

 
Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any 

candidate keys. 

 



DATABASE MANAGEMENT SYSTEMS Page 114  

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is 

dependent on emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) 

transitively dependent on super key (emp_id). This violates the rule of 3NF. 

 
To make this table complies with 3NF we have to break the table into two tables to remove 

the transitive dependency: 

 
employee table: 

 

 

emp_id emp_name emp_zip 

1001 John 282005 

1002 Ajeet 222008 

1006 Lora 282007 

1101 Lilly 292008 

1201 Steve 222999 

employee_zip table: 
 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 115  

emp_zip emp_state emp_city emp_district 

282005 UP Agra Dayal Bagh 

222008 TN Chennai M-City 

282007 TN Chennai Urrapakkam 

292008 UK Pauri Bhagwan 

222999 MP Gwalior Ratan 

 

 

 

 

 

Third Normal Form – 

 
A relation is in third normal form, if there is no transitive dependency for non-prime 

attributes as well as it is in second normal form. 

A relation is in 3NF if at least one of the following condition holds in every non-trivial 

function dependency X –> Y 

1. X is a super key. 

2. Y is a prime attribute (each element of Y is part of some candidate key). 
 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 116  

 
 

 
 
 

Transitive dependency – If A->B and B->C are two FDs then A->C is called transitive 

dependency. 

 Example 1 – In relation STUDENT given in Table 4, 

FD set: {STUD_NO -> STUD_NAME, STUD_NO -> STUD_STATE, 

STUD_STATE -> STUD_COUNTRY, STUD_NO -> STUD_AGE} 

Candidate Key: {STUD_NO} 

 

For this relation in table 4, STUD_NO -> STUD_STATE and STUD_STATE -> 

STUD_COUNTRY are true. So STUD_COUNTRY is transitively dependent on 

STUD_NO. It violates the third normal form. To convert it in third normal form, 

we will decompose the relation STUDENT (STUD_NO, STUD_NAME, 

STUD_PHONE, STUD_STATE, STUD_COUNTRY_STUD_AGE) as: 

STUDENT (STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, 

STUD_AGE) 

STATE_COUNTRY (STATE, COUNTRY) 

 

 Example 2 – Consider relation R(A, B, C, D, E) 

A -> BC, 

CD -> E, 

B -> D, 

E -> A 

All possible candidate keys in above relation are {A, E, CD, BC} All attribute 

are on right sides of all functional dependencies are prime. 

Fourth normal form (4NF) 

o A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued 

dependency. 

o For a dependency A → B, if for a single value of A, multiple values of B exists, then 

the relation will be a multi-valued dependency. 

 
 



DATABASE MANAGEMENT SYSTEMS Page 117  

Example 

 
STUDENT 

 
 

STU_ID COURSE HOBBY 

21 Computer Dancing 

21 Math Singing 

34 Chemistry Dancing 

74 Biology Cricket 

59 Physics Hockey 

 

The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent 

entity. Hence, there is no relationship between COURSE and HOBBY. 

 

In the STUDENT relation, a student with STU_ID, 21 contains two 

courses, Computer and Math and two hobbies, Dancing and Singing. So there is a Multi- 

valued dependency on STU_ID, which leads to unnecessary repetition of data. 

 

So to make the above table into 4NF, we can decompose it into two tables: 

 
STUDENT_COURSE 

 
 

STU_ID COURSE 

21 Computer 

 
 



DATABASE MANAGEMENT SYSTEMS Page 118  

21 Math 

34 Chemistry 

74 Biology 

59 Physics 

 

STUDENT_HOBBY 
 
 

STU_ID HOBBY 

21 Dancing 

21 Singing 

34 Dancing 

74 Cricket 

59 Hockey 

 

 

Fourth normal form (4NF) 

 
o A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued 

dependency. 

o For a dependency A → B, if for a single value of A, multiple values of B exists, then 

the relation will be a multi-valued dependency. 

 



DATABASE MANAGEMENT SYSTEMS Page 119  

Example 

 
STUDENT 

 
 

STU_ID COURSE HOBBY 

21 Computer Dancing 

21 Math Singing 

34 Chemistry Dancing 

74 Biology Cricket 

59 Physics Hockey 

 

The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent 

entity. Hence, there is no relationship between COURSE and HOBBY. 

 

In the STUDENT relation, a student with STU_ID, 21 contains two 

courses, Computer and Math and two hobbies, Dancing and Singing. So there is a Multi- 

valued dependency on STU_ID, which leads to unnecessary repetition of data. 

 

So to make the above table into 4NF, we can decompose it into two tables: 

 
STUDENT_COURSE 

 

 

STU_ID COURSE 

21 Computer 

 

 



DATABASE MANAGEMENT SYSTEMS Page 120  

21 Math 

34 Chemistry 

74 Biology 

59 Physics 

 

STUDENT_HOBBY 
 
 

STU_ID HOBBY 

21 Dancing 

21 Singing 

34 Dancing 

74 Cricket 

59 Hockey 

 

 

 

 

 

Example – Consider the database table of a class whaich has two relations R1 contains 

student ID(SID) and student name (SNAME) and R2 contains course id(CID) and course 

name (CNAME). 

 
Table – R1(SID, SNAME) 

 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 121  

SID SNAME 

S1 A 

S2 B 

CID CNAME 

C1 C 

C2 D 

When there cross product is done it resulted in multivalued dependencies: 

 

 
Table – R1 X R2 

 

SID SNAME CID CNAME 

 

S1 
 

A 
 

C1 
 

C 

 

S1 

 

A 

 

C2 

 

D 

 

S2 
 

B 
 

C1 
 

C 

 

S2 

 

B 

 

C2 

 

D 

Multivalued dependencies (MVD) are: 

 
SID->->CID; SID->->CNAME; SNAME->->CNAME 

 
Multivalued Dependency 

 
 

 
 



DATABASE MANAGEMENT SYSTEMS Page 122  

o Multivalued dependency occurs when two attributes in a table are independent of each 

other but, both depend on a third attribute. 

o A multivalued dependency consists of at least two attributes that are dependent on a 

third attribute that's why it always requires at least three attributes. 

 
Example: Suppose there is a bike manufacturer company which produces two colors(white 

and black) of each model every year. 

 

BIKE_MODEL MANUF_YEAR COLOR 

M2011 2008 White 

M2001 2008 Black 

M3001 2013 White 

M3001 2013 Black 

M4006 2017 White 

M4006 2017 Black 

 

Here columns COLOR and MANUF_YEAR are dependent on BIKE_MODEL and 

independent of each other. 

 

In this case, these two columns can be called as multivalued dependent on BIKE_MODEL. 

The representation of these dependencies is shown below: 

 

1. BIKE_MODEL → → MANUF_YEAR 

2. BIKE_MODEL →  → COLOR 

 
This can be read as "BIKE_MODEL multidetermined MANUF_YEAR" and 

"BIKE_MODEL multidetermined COLOR". 

 

 
 

Join Dependency 
 
 



DATABASE MANAGEMENT SYSTEMS Page 123  

o Join decomposition is a further generalization of Multivalued dependencies. 

o If the join of R1 and R2 over C is equal to relation R, then we can say that a join 

dependency (JD) exists. 

o Where R1 and R2 are the decompositions R1(A, B, C) and R2(C, D) of a given 

relations R (A, B, C, D). 

o Alternatively, R1 and R2 are a lossless decomposition of R. 

o A JD ⋈ {R1, R2,..., Rn} is said to hold over a relation R if R1, R2, .... , Rn is a 

lossless-join decomposition. 

o The *(A, B, C, D), (C, D) will be a JD of R if the join of join's attribute is equal to the 

relation R. 

o Here, *(R1, R2, R3) is used to indicate that relation R1, R2, R3 and so on are a JD of 

R. 

 

 

 
Fifth normal form (5NF) 

o A relation is in 5NF if it is in 4NF and not contains any join dependency and joining 

should be lossless. 

o 5NF is satisfied when all the tables are broken into as many tables as possible in order 

to avoid redundancy. 

o 5NF is also known as Project-join normal form (PJ/NF). 

 
Example 

 

 

SUBJECT LECTURER SEMESTER 

Computer Anshika Semester 1 

Computer John Semester 1 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 124  

Math John Semester 1 

Math Akash Semester 2 

Chemistry Praveen Semester 1 

 

In the above table, John takes both Computer and Math class for Semester 1 but he doesn't 

take Math class for Semester 2. In this case, combination of all these fields required to 

identify a valid data. 

 

Suppose we add a new Semester as Semester 3 but do not know about the subject and who 

will be taking that subject so we leave Lecturer and Subject as NULL. But all three columns 

together acts as a primary key, so we can't leave other two columns blank. 

 

So to make the above table into 5NF, we can decompose it into three relations P1, P2 & P3: 

 
P1 

 
 

SEMESTER SUBJECT 

Semester 1 Computer 

Semester 1 Math 

Semester 1 Chemistry 

Semester 2 Math 

 

P2 
 

 

 

 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 125  

SUBJECT LECTURER 

Computer Anshika 

Computer John 

Math John 

Math Akash 

Chemistry Praveen 

 

P3 
 

 

SEMSTER LECTURER 

Semester 1 Anshika 

Semester 1 John 

Semester 1 John 

Semester 2 Akash 

Semester 1 Praveen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 126  

Normal 

Form 

Description 

1NF A relation is said to be in 1NF if it contains an atomic value. 

2NF A relation is said to be in 2NF if it is in 1NF and all non-key 

attributes are fully functionally dependent on the primary key. 

3NF A relation is said to be in 3NF if it is in 2NF and no transition 

dependency exists. 

BCNF A stronger definition of 3NF is known as Boyce Codd's normal 

form. 

4NF A relation is said to be in 4NF if it is in Boyce Codd's normal form 

and has no multi-valued dependency. 

5NF A relation is said to be in 5NF, If it is in 4NF and does not contain 

any join dependency. Joining should be lossless. 

 

 

Advantages of Normalization 

o It helps to minimize data redundancy. 

o Greater overall database organization. 

o Data consistency within the database. 

o Much more flexible database design. 

o Enforces the concept of relational integrity. 

 

Disadvantages of Normalization 

o You cannot start building the database before knowing what the user needs. 

o The performance degrades when normalizing the relations to higher normal forms, i.e.,4NF,5NF. 

o It is very time-consuming and difficult to normalize relations of a higher degree. 

o Careless decomposition might lead to a bad database design, leading to serious problems. 

https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form


DATABASE MANAGEMENT SYSTEMS Page 127  

 

UNIT-IV 

 
 

TRANSACTION MANAGEMENT IN DBMS: 

 
 A transaction is a set of logically related operations. 

 
 Now that we understand what transaction is, we should understand what are the 

problems associated with it. 

 
 The main problem that can happen during a transaction is that the transaction can fail 

before finishing the all the operations in the set. This can happen due to power failure, 

system crash etc. 

 
 This is a serious problem that can leave database in an inconsistent state. Assume that 

transaction fail after third operation (see the example above) then the amount would 

be deducted from your account but your friend will not receive it. 

 
To solve this problem, we have the following two operations 

 
 

Commit: If all the operations in a transaction are completed successfully then commit those 

changes to the database permanently. 

 
Rollback: If any of the operation fails then rollback all the changes done by previous 

operations. 

 
STATES OF TRANSACTION 

Transactions can be implemented using SQL queries and Server. In the below-given 

diagram, you can see how transaction states works. 



DATABASE MANAGEMENT SYSTEMS Page 128  

 
 

 

Active state 

 
o The active state is the first state of every transaction. In this state, the transaction is 

being executed. 

o For example: Insertion or deletion or updating a record is done here. But all the 

records are still not saved to the database. 

 
Partially committed 

 
o In the partially committed state, a transaction executes its final operation, but the data 

is still not saved to the database. 

o In the total mark calculation example, a final display of the total marks step is 

executed in this state. 

 
Committed 

 
A transaction is said to be in a committed state if it executes all its operations successfully. In 

this state, all the effects are now permanently saved on the database system. 

 

Failed state 

 
o If any of the checks made by the database recovery system fails, then the transaction 

is said to be in the failed state. 

o In the example of total mark calculation, if the database is not able to fire a query to 

fetch the marks, then the transaction will fail to execute. 

 
 

 



DATABASE MANAGEMENT SYSTEMS Page 129  

Aborted 

 
o If any of the checks fail and the transaction has reached a failed state then the 

database recovery system will make sure that the database is in its previous consistent 

state. If not then it will abort or roll back the transaction to bring the database into a 

consistent state. 

o If the transaction fails in the middle of the transaction then before executing the 

transaction, all the executed transactions are rolled back to its consistent state. 

o After aborting the transaction, the database recovery module will select one of the two 

operations: 

1. Re-start the transaction 

2. Kill the transaction 

 

 

 
TRANSACTION PROPERTY 

 
The transaction has the four properties. These are used to maintain consistency in a database, 

before and after the transaction. 

 

Property of Transaction 

1. Atomicity 

2. Consistency 

3. Isolation 

4. Durability 

 
Atomicity 

o It states that all operations of the transaction take place at once if not, the transaction 

is aborted. 

o There is no midway, i.e., the transaction cannot occur partially. Each transaction is 

treated as one unit and either run to completion or is not executed at all. 

 
Atomicity involves the following two operations: 

 
Abort: If a transaction aborts then all the changes made are not visible. 

 



DATABASE MANAGEMENT SYSTEMS Page 130  

Commit: If a transaction commits then all the changes made are visible. 

 
Consistency 

o The integrity constraints are maintained so that the database is consistent before and 

after the transaction. 

o The execution of a transaction will leave a database in either its prior stable state or a 

new stable state. 

o The consistent property of database states that every transaction sees a consistent 

database instance. 

o The transaction is used to transform the database from one consistent state to another 

consistent state. 

 
Isolation 

o It shows that the data which is used at the time of execution of a transaction cannot be 

used by the second transaction until the first one is completed. 

o In isolation, if the transaction T1 is being executed and using the data item X, then 

that data item can't be accessed by any other transaction T2 until the transaction T1 

ends. 

o The concurrency control subsystem of the DBMS enforced the isolation property. 

 
Durability 

o The durability property is used to indicate the performance of the database's 

consistent state. It states that the transaction made the permanent changes. 

o They cannot be lost by the erroneous operation of a faulty transaction or by the 

system failure. When a transaction is completed, then the database reaches a state 

known as the consistent state. That consistent state cannot be lost, even in the event of 

a system's failure. 

o The recovery subsystem of the DBMS has the responsibility of Durability property. 

 
IMPLEMENTATION OF ATOMICITY AND DURABILITY 

 

 
The recovery-management component of a database system can support atomicity 

and durability by a variety of schemes. 

 



DATABASE MANAGEMENT SYSTEMS Page 131  

E.g. the shadow-database scheme: 

 
Shadow copy: 

 
 In the shadow-copy scheme, a transaction that wants to update the database first creates a 

complete copy of the database. 

  All updates are done on the new database copy, leaving the original copy, the shadow copy, 

untouched. If at any point the transaction has to be aborted, the system merely deletes the 

new copy. The old copy of the database has not been affected. 

 This scheme is based on making copies of the database, called shadow copies, assumes that 

only one transaction is active at a time. 

 The scheme also assumes that the database is simply a file on disk. A pointer called db- 

pointer is maintained on disk; it points to the current copy of the database. 

 

If the transaction completes, it is committed as follows: 

 

 First, the operating system is asked to make sure that all pages of the new copy of the 

database have been written out to disk. (Unix systems use the flush command for this 

purpose.) 

 After the operating system has written all the pages to disk, the database system updates the 

pointer db-pointer to point to the new copy of the database; 

  the new copy then becomes the current copy of the database. The old copy of the database is 

then deleted. 

 

Figure below depicts the scheme, showing the database state before and after the update. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 132  

 

 
 

 
 

SCHEDULE 

 
A series of operation from one transaction to another transaction is known as schedule. It is 

used to preserve the order of the operation in each of the individual transaction. 

 
 

 

 
1. SERIAL SCHEDULE 

 
The serial schedule is a type of schedule where one transaction is executed completely before 

starting another transaction. In the serial schedule, when the first transaction completes its 

cycle, then the next transaction is executed. 

 

 



DATABASE MANAGEMENT SYSTEMS Page 133  

For example: Suppose there are two transactions T1 and T2 which have some operations. If 

it has no interleaving of operations, then there are the following two possible outcomes: 

 

1. Execute all the operations of T1 which was followed by all the operations of T2. 

2. Execute all the operations of T1 which was followed by all the operations of T2. 

 
o In the given (a) figure, Schedule A shows the serial schedule where T1 followed by 

T2. 

o In the given (b) figure, Schedule B shows the serial schedule where T2 followed by 

T1. 

 
2. NON-SERIAL SCHEDULE 

o If interleaving of operations is allowed, then there will be non-serial schedule. 

o It contains many possible orders in which the system can execute the individual 

operations of the transactions. 

o In the given figure (c) and (d), Schedule C and Schedule D are the non-serial 

schedules. It has interleaving of operations. 

 
3. SERIALIZABLE SCHEDULE 

o The serializability of schedules is used to find non-serial schedules that allow the 

transaction to execute concurrently without interfering with one another. 

o It identifies which schedules are correct when executions of the transaction have 

interleaving of their operations. 

o A non-serial schedule will be serializable if its result is equal to the result of its 

transactions executed serially. 

 

 
SERIALIZABILITY IN DBMS 

 

 

 Some non-serial schedules may lead to inconsistency of the database. 

 Serializability is a concept that helps to identify which non-serial schedules are correct and 

will maintain the consistency of the database. 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 134  

Types of Serializability 

 

 

Serializability is mainly of two types- 
 

 

 

 

 

 

1. Conflict Serializability 

2. View Serializability 

 

 
Conflict Serializability 

If a given non-serial schedule can be converted into a serial schedule by swapping its non- 

conflicting operations, then it is called as a conflict serializable schedule. 

 

 

 
Conflicting Operations 

 

 

Two operations are called as conflicting operations if all the following conditions hold true 

for them- 

 Both the operations belong to different transactions 

 Both the operations are on the same data item 

 At least one of the two operations is a write operation 

Example- 

 
 

 



DATABASE MANAGEMENT SYSTEMS Page 135  

Consider the following schedule- 
 

 

 
 

 

 
 

In this schedule, 

 
 W1 (A) and R2 (A) are called as conflicting operations. 

 This is because all the above conditions hold true for them. 

Checking Whether a Schedule is Conflict Serializable Or Not- 

 

 

Follow the following steps to check whether a given non-serial schedule is conflict 

serializable or not- 

Follow the following steps to check whether a given non-serial schedule is conflict 

serializable or not- 

Step-01: 
 

Find and list all the conflicting operations. 

 
Step-02: 

 

Start creating a precedence graph by drawing one node for each transaction. 

 
Step-03: 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 136  

Draw an edge for each conflict pair such that if Xi (V) and Yj (V) forms a conflict pair then 

draw an edge from Ti to Tj. 

 This ensures that Ti gets executed before Tj. 

Step-04: 
 

Check if there is any cycle formed in the graph. 

 
 If there is no cycle found, then the schedule is conflict serializable otherwise not. 

VIEW SERIALIZABILITY? 

 
View Serializability is a process to find out that a given schedule is view serializable or not. 

 
 

To check whether a given schedule is view serializable, we need to check whether the given 

schedule is View Equivalent to its serial schedule. Lets take an example to understand what I 

mean by that. 

 
View Serializability 

o A schedule will view serializable if it is view equivalent to a serial schedule. 

o If a schedule is conflict serializable, then it will be view serializable. 

o The view serializable which does not conflict serializable contains blind writes. 

 
View Equivalent 

 
Two schedules S1 and S2 are said to be view equivalent if they satisfy the following 

conditions: 

 

1. Initial Read: 

 
An initial read of both schedules must be the same. Suppose two schedule S1 and S2. In 

schedule S1, if a transaction T1 is reading the data item A, then in S2, transaction T1 should 

also read A. 

 

 

 

 

 

 

 

 

https://beginnersbook.com/2018/12/dbms-schedules/


DATABASE MANAGEMENT SYSTEMS Page 137  

 

 
 

 

 

 

Above two schedules are view equivalent because Initial read operation in S1 is done by T1 

and in S2 it is also done by T1. 

 

2. Updated Read 

 
In schedule S1, if Ti is reading A which is updated by Tj then in S2 also, Ti should read A 

which is updated by Tj. 

 
 

 

 
3. Final Write 

 
A final write must be the same between both the schedules. In schedule S1, if a transaction 

T1 updates A at last then in S2, final writes operations should also be done by T1. 

 

 

 

 

 

 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 138  

 

 

 

Above two schedules is view equal because Final write operation in S1 is done by T3 

and in S2, the final write operation is also done by T3. 

 

 
Recoverability of Schedule 

 
Sometimes a transaction may not execute completely due to a software issue, system crash or 

hardware failure. In that case, the failed transaction has to be rollback. But 

 

TRANSACTION ISOLATION LEVELS IN DBMS 

 
some other transaction may also have used value produced by the failed transaction. So we 

also have to rollback those transactions. 

 

The SQL standard defines four isolation levels : 

 
1. Read Uncommitted – Read Uncommitted is the lowest isolation level. In this level, 

one transaction may read not yet committed changes made by other transaction, thereby 

allowing dirty reads. In this level, transactions are not isolated from each other. 

2. Read Committed – This isolation level guarantees that any data read is committed at 

the moment it is read. Thus it does not allows dirty read. The transaction holds a read or 

write lock on the current row, and thus prevent other transactions from reading, 

updating or deleting it. 

3. Repeatable Read – This is the most restrictive isolation level. The transaction holds 

read locks on all rows it references and writes locks on all rows it inserts, updates, or 

 



DATABASE MANAGEMENT SYSTEMS Page 139  

deletes. Since other transaction cannot read, update or delete these rows, consequently it 

avoids non-repeatable read. 

4. Serializable – This is the Highest isolation level. A serializable execution is guaranteed 

to be serializable. Serializable execution is defined to be an execution of operations in 

which concurrently executing transactions appears to be serially executing. 

 
 

FAILURE CLASSIFICATION 

 
To find that where the problem has occurred, we generalize a failure into the following 

categories: 

 

1. Transaction failure 

2. System crash 

3. Disk failure 

 
1. Transaction failure 

 
The transaction failure occurs when it fails to execute or when it reaches a point from 

where it can't go any further. If a few transaction or process is hurt, then this is called 

as transaction failure. 

 

Reasons for a transaction failure could be - 

 
1. Logical errors: If a transaction cannot complete due to some code error or an 

internal error condition, then the logical error occurs. 

2. Syntax error: It occurs where the DBMS itself terminates an active 

transaction because the database system is not able to execute it. For 

example, The system aborts an active transaction, in case of deadlock or 

resource unavailability. 

 

2. System Crash 

 
o System failure can occur due to power failure or other hardware or software 

failure. Example: Operating system error. 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 140  

Fail-stop assumption: In the system crash, non-volatile storage is assumed 

not to be corrupted. 

 

3. Disk Failure 

 
o It occurs where hard-disk drives or storage drives used to fail frequently. It 

was a common problem in the early days of technology evolution. 

o Disk failure occurs due to the formation of bad sectors, disk head crash, and 

unreachability to the disk or any other failure, which destroy all or part of disk 

storage. 

 

 
CONCURRENT EXECUTION OF TRANSACTION 

 
 

In the transaction process, a system usually allows executing more than one transaction 

simultaneously. This process is called a concurrent execution. 

 

Advantages of concurrent execution of a transaction 

 
1. Decrease waiting time or turnaround time. 

2. Improve response time 

3. Increased throughput or resource utilization. 

 

 

Problems with Concurrent Execution 

 
In a database transaction, the two main operations are READ and WRITE operations. So, 

there is a need to manage these two operations in the concurrent execution of the transactions 

as if these operations are not performed in an interleaved manner, and the data may become 

inconsistent. So, the following problems occur with the Concurrent Execution of the 

operations: 

 

1: Lost Update Problems (W - W Conflict) 

 
2. Dirty Read Problems (W-R Conflict) 

 
3. Unrepeatable Read Problem (W-R Conflict) 

 



DATABASE MANAGEMENT SYSTEMS Page 141  

 

1. Lost update problem (Write – Write conflict) 

This type of problem occurs when two transactions in database access the same data item and 

have their operations in an interleaved manner that makes the value of some database item 

incorrect. 

If there are two transactions T1 and T2 accessing the same data item value and then update it, 

then the second record overwrites the first record. 

Example: Let’s take the value of A is 100 
 

 

Time Transaction T1 Transaction T2 

t1 Read(A) 
 

t2 A=A-50 
 

t3 
 

Read(A) 

t4 
 

A=A+50 

t5 Write(A) 
 

t6 
 

Write(A) 

Here, 

 At t1 time, T1 transaction reads the value of A i.e., 100. 

 At t2 time, T1 transaction deducts the value of A by 50. 

 At t3 time, T2 transactions read the value of A i.e., 100. 

 At t4 time, T2 transaction adds the value of A by 150. 

 At t5 time, T1 transaction writes the value of A data item on the basis of value seen at time t2 

i.e., 50. 
 



DATABASE MANAGEMENT SYSTEMS Page 142  

 At t6 time, T2 transaction writes the value of A based on value seen at time t4 i.e., 150. 

 So at time T6, the update of Transaction T1 is lost because Transaction T2 overwrites the 

value of A without looking at its current value. 

 Such type of problem is known as the Lost Update Problem. 

 
Dirty read problem (W-R conflict) 

 
This type of problem occurs when one transaction T1 updates a data item of the database, and 

then that transaction fails due to some reason, but its updates are accessed by some other 

transaction. 

Example: Let’s take the value of A is 100 
 

 

Time Transaction T1 Transaction T2 

t1 Read(A) 
 

t2 A=A+20 
 

t3 Write(A) 
 

t4 
 

Read(A) 

t5 
 

A=A+30 

t6 
 

Write(A) 

t7 Write(B) 
 

Here, 

 At t1 time, T1 transaction reads the value of A i.e., 100. 

 



DATABASE MANAGEMENT SYSTEMS Page 143  

 At t2 time, T1 transaction adds the value of A by 20. 

 At t3 time, T1transaction writes the value of A (120) in the database. 

 At t4 time, T2 transactions read the value of A data item i.e., 120. 

 At t5 time, T2 transaction adds the value of A data item by 30. 

 At t6 time, T2transaction writes the value of A (150) in the database. 

 At t7 time, a T1 transaction fails due to power failure then it is rollback according to 

atomicity property of transaction (either all or none). 

 So, transaction T2 at t4 time contains a value which has not been committed in the database. 

The value read by the transaction T2 is known as a dirty read. 

 
Unrepeatable read (R-W Conflict) 

 
It is also known as an inconsistent retrieval problem. If a transaction T1 reads a value of data 

item twice and the data item is changed by another transaction T2 in between the two read 

operation. Hence T1 access two different values for its two read operation of the same data 

item. 

Example: Let’s take the value of A is 100 
 

Time Transaction T1 Transaction T2 

t1 Read(A) 
 

t2 
 

Read(A) 

t3 
 

A=A+30 

t4 
 

Write(A) 

t5 Read(A) 
 

Here, 

 At t1 time, T1 transaction reads the value of A i.e., 100. 

 



DATABASE MANAGEMENT SYSTEMS Page 144  

 At t2 time, T2transaction reads the value of A i.e., 100. 

 At t3 time, T2 transaction adds the value of A data item by 30. 

 At t4 time, T2 transaction writes the value of A (130) in the database. 

 Transaction T2 updates the value of A. Thus, when another read statement is performed by 

transaction T1, it accesses the new value of A, which was updated by T2. Such type of 

conflict is known as R-W conflict. 

 

 
CONCURRENCY CONTROL 

 
Concurrency Control is the working concept that is required for controlling and managing the 

concurrent execution of database operations and thus avoiding the inconsistencies in the 

database. Thus, for maintaining the concurrency of the database, we have the concurrency 

control protocols. 

 
Concurrency Control Protocols 

 
The concurrency control protocols ensure the atomicity, consistency, isolation, 

durability and serializability of the concurrent execution of the database transactions. 

Therefore, these protocols are categorized as: 

 

o Lock Based Concurrency Control Protocol 

o Time Stamp Concurrency Control Protocol 

o Validation Based Concurrency Control Protocol 

 
Lock-Based Protocol 

 
In this type of protocol, any transaction cannot read or write data until it acquires an 

appropriate lock on it. There are two types of lock: 

 

1. Shared lock: 

 
o It is also known as a Read-only lock. In a shared lock, the data item can only read by 

the transaction. 

o It can be shared between the transactions because when the transaction holds a lock, 

then it can't update the data on the data item. 

 



DATABASE MANAGEMENT SYSTEMS Page 145  

2. Exclusive lock: 

 
o In the exclusive lock, the data item can be both reads as well as written by the 

transaction. 

o This lock is exclusive, and in this lock, multiple transactions do not modify the same 

data simultaneously. 

 
TWO-PHASE LOCKING (2PL) 

 
o The two-phase locking protocol divides the execution phase of the transaction into 

three parts. 

o In the first part, when the execution of the transaction starts, it seeks permission for 

the lock it requires. 

o In the second part, the transaction acquires all the locks. The third phase is started as 

soon as the transaction releases its first lock. 

o In the third phase, the transaction cannot demand any new locks. It only releases the 

acquired locks. 

 

 

 

 

 

 

 

There are two phases of 2PL: 

 
Growing phase: In the growing phase, a new lock on the data item may be acquired by the 

transaction, but none can be released. 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 146  

Shrinking phase: In the shrinking phase, existing lock held by the transaction may be 

released, but no new locks can be acquired. 

 

In the below example, if lock conversion is allowed then the following phase can happen: 

 
1. Upgrading of lock (from S(a) to X (a)) is allowed in growing phase. 

2. Downgrading of lock (from X(a) to S(a)) must be done in shrinking phase. 

 
Example: 

 

 
 

 

 
The following way shows how unlocking and locking work with 2-PL. 

 

 

 

Transaction T1: 

 
o Growing phase: from step 1-3 

o Shrinking phase: from step 5-7 



DATABASE MANAGEMENT SYSTEMS Page 147  

o Lock point: at 3 

 
Transaction T2: 

 
o Growing phase: from step 2-6 

o Shrinking phase: from step 8-9 

o Lock point: at 6 

 
4. Strict Two-phase locking (Strict-2PL) 

 
o The first phase of Strict-2PL is similar to 2PL. In the first phase, after acquiring all the 

locks, the transaction continues to execute normally. 

o The only difference between 2PL and strict 2PL is that Strict-2PL does not release a 

lock after using it. 

o Strict-2PL waits until the whole transaction to commit, and then it releases all the 

locks at a time. 

o Strict-2PL protocol does not have shrinking phase of lock release. 
 

 

 
 

 

 

 

 

 

 

 
TIMESTAMP ORDERING PROTOCOL 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 148  

o The Timestamp Ordering Protocol is used to order the transactions based on their 

Timestamps. The order of transaction is nothing but the ascending order of the 

transaction creation. 

o The priority of the older transaction is higher that's why it executes first. To determine 

the timestamp of the transaction, this protocol uses system time or logical counter. 

o The lock-based protocol is used to manage the order between conflicting pairs among 

transactions at the execution time. But Timestamp based protocols start working as 

soon as a transaction is created. 

 
Basic Timestamp ordering protocol works as follows: 

 
1. Check the following condition whenever a transaction Ti issues a Read (X) operation: 

 
o If W_TS(X) >TS(Ti) then the operation is rejected. 

o If W_TS(X) <= TS(Ti) then the operation is executed. 

o Timestamps of all the data items are updated. 

 
2. Check the following condition whenever a transaction Ti issues a Write(X) operation: 

 
o If TS(Ti) < R_TS(X) then the operation is rejected. 

o If TS(Ti) < W_TS(X) then the operation is rejected and Ti is rolled back otherwise the 

operation is executed. 

 
Where, 

 
TS(TI) denotes the timestamp of the transaction Ti. 

R_TS(X) denotes the Read time-stamp of data-item X. 

W_TS(X) denotes the Write time-stamp of data-item X. 

Validation Based Protocol 

Validation phase is also known as optimistic concurrency control technique. In the validation 

based protocol, the transaction is executed in the following three phases: 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 149  

1. Read phase: In this phase, the transaction T is read and executed. It is used to read 

the value of various data items and stores them in temporary local variables. It can 

perform all the write operations on temporary variables without an update to the 

actual database. 

2. Validation phase: In this phase, the temporary variable value will be validated 

against the actual data to see if it violates the serializability. 

3. Write phase: If the validation of the transaction is validated, then the temporary 

results are written to the database or system otherwise the transaction is rolled back. 

 

Here each phase has the following different timestamps: 

 
Start(Ti): It contains the time when Ti started its execution. 

 
Validation (Ti): It contains the time when Ti finishes its read phase and starts its validation 

phase. 

 

Finish(Ti): It contains the time when Ti finishes its write phase. 

 
o This protocol is used to determine the time stamp for the transaction for serialization 

using the time stamp of the validation phase, as it is the actual phase which 

determines if the transaction will commit or rollback. 

o Hence TS(T) = validation(T). 

o The serializability is determined during the validation process. It can't be decided in 

advance. 

o While executing the transaction, it ensures a greater degree of concurrency and also 

less number of conflicts. 

o Thus it contains transactions which have less number of rollbacks. 

 
THOMAS WRITE RULE 

 
Thomas Write Rule provides the guarantee of serializability order for the protocol. It 

improves the Basic Timestamp Ordering Algorithm. 

 

The basic Thomas write rules are as follows: 
 

 

 



DATABASE MANAGEMENT SYSTEMS Page 150  

o If TS(T) < R_TS(X) then transaction T is aborted and rolled back, and operation is 

rejected. 

o If TS(T) < W_TS(X) then don't execute the W_item(X) operation of the transaction 

and continue processing. 

o If neither condition 1 nor condition 2 occurs, then allowed to execute the WRITE 

operation by transaction Ti and set W_TS(X) to TS(T). 

 

 

 

 
MULTIPLE GRANULARITY 

 
Let's start by understanding the meaning of granularity. 

Granularity: It is the size of data item allowed to lock. 

Multiple Granularity: 

o It can be defined as hierarchically breaking up the database into blocks which can be 

locked. 

o The Multiple Granularity protocol enhances concurrency and reduces lock overhead. 

o It maintains the track of what to lock and how to lock. 

o It makes easy to decide either to lock a data item or to unlock a data item. This type of 

hierarchy can be graphically represented as a tree. 

 
o The first level or higher level shows the entire database. 

o The second level represents a node of type area. The higher level database consists of 

exactly these areas. 

o The area consists of children nodes which are known as files. No file can be present in 

more than one area. 

o Finally, each file contains child nodes known as records. The file has exactly those 

records that are its child nodes. No records represent in more than one file. 

o Hence, the levels of the tree starting from the top level are as follows: 

o Database 
 

 



DATABASE MANAGEMENT SYSTEMS Page 151  

o Area 

o File 

o Record 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 152  

UNIT-V 

 

Recovery and Atomicity – Log – Based Recovery – Recovery with Concurrent Transactions 

– Check Points - Buffer Management – Failure with loss of nonvolatile storage-Advance 

Recovery systems- ARIES Algorithm, Remote Backup systems. File organization – various 

kinds of indexes - B+ Trees- Query Processing – Relational Query Optimization. 

 
Recovery and Atomicity: 

 
 

 When a system crashes, it may have several transactions being executed and various 

files opened for them to modify the data items.

 But according to ACID properties of DBMS, atomicity of transactions as a whole 

must be maintained, that is, either all the operations are executed or none.

 Database recovery means recovering the data when it get deleted, hacked or 

damaged accidentally.

 Atomicity is must whether is transaction is over or not it should reflect in the database 

permanently or it should not effect the database at all.

When a DBMS recovers from a crash, it should maintain the following − 

 

 It should check the states of all the transactions, which were being executed. 

 

 A transaction may be in the middle of some operation; the DBMS must ensure 

the atomicity of the transaction in this case. 

 It should check whether the transaction can be completed now or it needs to be 

rolled back. 

 No transactions would be allowed to leave the DBMS in an inconsistent state. 

 

There are two types of techniques, which can help a DBMS in recovering as well as 

maintaining the atomicity of a transaction − 

 Maintaining the logs of each transaction, and writing them onto some stable storage 

before actually modifying the database.

 Maintaining shadow paging, where the changes are done on a volatile memory, and 

later, the actual database is updated.

 



DATABASE MANAGEMENT SYSTEMS Page 153  

Log-Based Recovery 

 
o The log is a sequence of records. Log of each transaction is maintained in some stable 

storage so that if any failure occurs, then it can be recovered from there. 

o If any operation is performed on the database, then it will be recorded in the log. 

o But the process of storing the logs should be done before the actual transaction is 

applied in the database. 

 
There are two approaches to modify the database: 

 
1. Deferred database modification: 

 
o The deferred modification technique occurs if the transaction does not modify the 

database until it has committed. 

o In this method, all the logs are created and stored in the stable storage, and the 

database is updated when a transaction commits. 

 
2. Immediate database modification: 

 
o The Immediate modification technique occurs if database modification occurs while 

the transaction is still active. 

o In this technique, the database is modified immediately after every operation. It 

follows an actual database modification. 

 
Recovery with Concurrent Transactions 

 
Concurrency control means that multiple transactions can be executed at the same time and 

then the interleaved logs occur. But there may be changes in transaction results so maintain 

the order of execution of those transactions. 

During recovery, it would be very difficult for the recovery system to backtrack all the logs 

and then start recovering. 

Recovery with concurrent transactions can be done in the following four ways. 

 

1. Interaction with concurrency control 

2. Transaction rollback 

3. Checkpoints 
 

https://www.geeksforgeeks.org/concurrency-control-in-dbms/


DATABASE MANAGEMENT SYSTEMS Page 154  

4. Restart recovery 

Interaction with concurrency control: 

 
 

In this scheme, the recovery scheme depends greatly on the concurrency control scheme 

that is used. So, to rollback a failed transaction, we must undo the updates performed by the 

transaction. 

Transaction rollback : 

 In this scheme, we rollback a failed transaction by using the log. 

 The system scans the log backward a failed transaction, for every log record found in 

the log the system restores the data item. 

Checkpoints : 

 Checkpoints is a process of saving a snapshot of the applications state so that it can 

restart from that point in case of failure. 

 Checkpoint is a point of time at which a record is written onto the database form the 

buffers. 

 Checkpoint shortens the recovery process. 

 When it reaches the checkpoint, then the transaction will be updated into the database, 

and till that point, the entire log file will be removed from the file. Then the log file is 

updated with the new step of transaction till the next checkpoint and so on. 

 The checkpoint is used to declare the point before which the DBMS was in the 

consistent state, and all the transactions were committed. 

 
Restart recovery: 

 
 

 When the system recovers from a crash, it constructs two lists. 

 The undo-list consists of transactions to be undone, and the redo-list consists of 

transaction to be redone. 

 The system constructs the two lists as follows: Initially, they are both empty. The 

system scans the log backward, examining each record, until it finds the first 

<checkpoint> record. 
 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 155  

Check Points: 

 
 Checkpoints are a process of saving a snapshot of the applications state so that it can 

restart from that point in case of failure. 

 Checkpoint is a point of time at which a record is written onto the database form the 

buffers. 

 Checkpoint shortens the recovery process. 

 When it reaches the checkpoint, then the transaction will be updated into the database, 

and till that point, the entire log file will be removed from the file. Then the log file is 

updated with the new step of transaction till the next checkpoint and so on. 

The checkpoint is used to declare the point before which the DBMS was in the consistent 

state, and all the transactions were committed. 

 

 

 
BUFFER MANAGEMENT 

The buffer manager is the software layer that is responsible for bringing pages from 

physical disk to main memory as needed. The buffer manages the available main memory by 

dividing the main memory into a collection of pages, which we called as buffer pool. The 

main memory pages in the buffer pool are called frames. 

 Data must be in RAM for DBMS to operate on it! 

 Buffer manager hides the fact that not all data is in RAM. 
 

 

 

 

 

 

 



DATABASE MANAGEMENT SYSTEMS Page 156  

 

 

Buffer Manager 

 
o A Buffer Manager is responsible for allocating space to the buffer in order to store 

data into the buffer. 

o If a user request a particular block and the block is available in the buffer, the buffer 

manager provides the block address in the main memory. 

o If the block is not available in the buffer, the buffer manager allocates the block in the 

buffer. 

o If free space is not available, it throws out some existing blocks from the buffer to 

allocate the required space for the new block. 

o The blocks which are thrown are written back to the disk only if they are recently 

modified when writing on the disk. 

o If the user requests such thrown-out blocks, the buffer manager reads the requested 

block from the disk to the buffer and then passes the address of the requested block to 

the user in the main memory. 

o However, the internal actions of the buffer manager are not visible to the programs 

that may create any problem in disk-block requests. The buffer manager is just like a 

virtual machine 

 
Failure with Loss of Nonvolatile Storage 

 

 
Loss of Volatile Storage 

 

A volatile storage like RAM stores all the active logs, disk buffers, and related data. In 

addition, it stores all the transactions that are being currently executed. What happens if such 

a volatile storage crashes abruptly? It would obviously take away all the logs and active 

 
 



DATABASE MANAGEMENT SYSTEMS Page 157  

copies of the database. It makes recovery almost impossible, as everything that is required to 

recover the data is lost. 

Following techniques may be adopted in case of loss of volatile storage − 

 

 We can have checkpoints at multiple stages so as to save the contents of the database 

periodically. 

 A state of active database in the volatile memory can be periodically dumped onto a 

stable storage, which may also contain logs and active transactions and buffer 

blocks. 

 <dump> can be marked on a log file, whenever the database contents are dumped 

from a non-volatile memory to a stable one. 

 

Recovery 

 
 When the system recovers from a failure, it can restore the latest dump. 

 

 It can maintain a redo-list and an undo-list as checkpoints. 

 

 It can recover the system by consulting undo-redo lists to restore the state of all 

transactions up to the last checkpoint. 

 

 

ARIES Algorithm: 

 
Algorithm for Recovery and Isolation Exploiting Semantics (ARIES) is based on the Write 

Ahead Log (WAL) protocol. Every update operation writes a log record which is one of the 

following : 

 
1. Undo-only log record: 

Only the before image is logged. Thus, an undo operation can be done to retrieve the 

old data. 

2. Redo-only log record: 

Only the after image is logged. Thus, a redo operation can be attempted. 

3. Undo-redo log record: 

Both before images and after images are logged. 
 

 

https://www.geeksforgeeks.org/log-based-recovery-in-dbms/


DATABASE MANAGEMENT SYSTEMS Page 158  

 

 In it, every log record is assigned a unique and monotonically increasing log 

sequence number (LSN). 

 Every data page has a page LSN field that is set to the LSN of the log record 

corresponding to the last update on the page. 

 WAL requires that the log record corresponding to an update make it to stable 

storage before the data page corresponding to that update is written to disk. 

 For performance reasons, each log write is not immediately forced to disk. A log tail 

is maintained in main memory to buffer log writes. 

 The log tail is flushed to disk when it gets full. A transaction cannot be declared 

committed until the commit log record makes it to disk. 

 Once in a while the recovery subsystem writes a checkpoint record to the log. The 

checkpoint record contains the transaction table and the dirty page table. 

 A master log record is maintained separately, in stable storage, to store the LSN of 

the latest checkpoint record that made it to disk. 

 On restart, the recovery subsystem reads the master log record to find the 

checkpoint’s LSN, reads the checkpoint record, and starts recovery from there on. 

The recovery process actually consists of 3 phases: 

 
1. Analysis: 

The recovery subsystem determines the earliest log record from which the next pass 

must start. It also scans the log forward from the checkpoint record to construct a 

snapshot of what the system looked like at the instant of the crash. 

2. Redo: 

Starting at the earliest LSN, the log is read forward and each update redone. 

3. Undo: 

The log is scanned backward and updates corresponding to loser transactions are 

undone. 

 

 

 

 

 
 



DATABASE MANAGEMENT SYSTEMS Page 159  

Remote Backup 
 

Remote backup provides a sense of security in case the primary location where the database 

is located gets destroyed. Remote backup can be offline or real-time or online. In case it is 

offline, it is maintained manually. 

 

 
Online backup systems are more real-time and lifesavers for database administrators and 

investors. An online backup system is a mechanism where every bit of the real-time data is 

backed up simultaneously at two distant places. One of them is directly connected to the 

system and the other one is kept at a remote place as backup. 

As soon as the primary database storage fails, the backup system senses the failure and 

switches the user system to the remote storage. Sometimes this is so instant that the users 

can’t even realize a failure. 

File – A file is named collection of related information that is recorded on secondary 

storage such as magnetic disks, magnetic tables and optical disks. 

 

 
 

 

 

 

 

 

 

 

 
 


	PREPARED BY
	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (1)
	DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
	II Year B. Tech. CSE – I Sem                                                                     L/T/P/ C
	DATABASE MANAGEMENT SYSTEMS (R24A0504)
	UNIT I:
	UNIT II:
	UNIT III:
	UNIT IV:
	UNIT V:
	TEXT BOOKS:
	REFERENCE BOOKS:
	OUTCOMES:

	MALLAREDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
	UNIT -I
	INTRODUCTION TO DBMS:
	What is dbms?
	DATABASE APPLICATIONS – DBMS:
	PURPOSE OF DATABASE SYSTEMS
	Characteristics of DBMS
	Advantages of DBMS
	Disadvantages of DBMS
	View of Data in DBMS
	Data Abstraction in DBMS
	Instance and schema in DBMS
	Definition of instance:
	DBMS ARCHITECTURE:
	TYPES OF DBMS ARCHITECTURE
	1- Tier Architecture
	2. Two tier architecture
	3- Tier Architecture
	DATA MODELS:
	Four Types of DBMS systems are:
	Hierarchical DBMS
	Network Model
	Relational model
	Entity-Relationship Model
	DBMS languages
	CREATE DATABASE
	CREATE DATABASE database_name;
	CREATE TABLE:
	Example Query:
	DROP:
	DROP vs TRUNCATE
	ALTER (ADD, DROP, MODIFY)
	ALTER TABLE – DROP
	To ADD 2 columns AGE and COURSE to table Student.
	MODIFY column COURSE in table Student
	Comments
	SELECT Statement
	One column:
	More than one columns:
	To fetch the entire table or all the fields in the table:
	INSERT INTO Statement
	Example:
	UPDATE Statement
	DELETE Statement
	GRANT-gives user’s access privileges to database.
	COMMIT– commits a Transaction.
	SET TRANSACTION–specify characteristics for the transaction.
	DATA BASE USERS AND ADMINISTRATORS:
	Database Administrators
	Tasks of DBA
	Transaction Management?
	What are ACID Properties?
	Storage Manager In DBMS
	Query Processing in DBMS
	Parsing and Translation
	Query Evaluation Plan
	Optimization
	What is Relational Model?
	Relational Model Concepts
	Keys in DBMS
	Why we need a Key?
	Types of Keys in Database Management System
	Create Primary Key (ALTER TABLE statement)
	ER model
	a. Weak Entity
	a. Key Attribute
	b. Composite Attribute
	c. Multivalued Attribute
	d. Derived Attribute
	a. One-to-One Relationship
	b. One-to-many relationship
	c. Many-to-one relationship
	d. Many-to-many relationship
	1. Domain constraints
	Example: (1)
	Integrity Constraints
	4. Key constraints
	ER Design Issues
	Conceptual design

	UNIT-II
	Relational Algebra
	Input:
	Output:
	Syntax of Project Operator (∏)
	Example: CUSTOMER RELATION
	Output: (1)
	DEPOSITOR RELATION
	Input: (1)
	Output: (2)
	Cartesian Product (X):
	EMPLOYEE
	Input: (2)
	Output: (3)
	Join in DBMS:
	Types of SQL JOIN
	Table name: EMPLOYEE
	1. INNER JOIN
	Syntax
	Query
	Output
	Syntax (1)
	Query (1)
	Output (1)
	Syntax (2)
	Query (2)
	Output (2)
	Syntax (3)
	Query (3)
	Output (3)
	CREATE TABLE AllStudents AS SELECT DISTINCT Student_Name FROM Course_Taken
	2. Find all the students and the courses required to graduate
	CREATE table StudentsAndRequired AS
	Relational Calculus:
	Tuple Relational Calculus (TRC)
	Output: (4)
	Table-1: Customer
	Table-3: Account
	Table-5: Borrower
	Domain Relational Calculus (DRC)
	Note:
	Output: (5)
	SELECT column1,column2 FROM table_name
	From clause:
	(SELECT column_x as C1, column_y FROM table WHERE PREDICATE_X) as table2
	SET Operations
	1. Union
	Syntax (4)
	The First table
	2. Union All
	Syntax:
	3. Intersect
	Syntax (5)
	Example:
	4. Minus
	Syntax: (1)
	Example
	Aggregate functions in SQL
	Aggregate Functions
	1. COUNT FUNCTION
	PRODUCT_MAST
	Output: (6)
	Example: COUNT with WHERE
	Output:7
	Output: (7)
	Syntax (6)
	Example: SUM()
	Output: (8)
	Output: (9)
	Syntax (7)
	Example: (1)
	Output: (10)
	Example: (2)
	5. MIN Function
	GROUP BY Statement
	Example: (3)
	HAVING Clause:
	Syntax: (2)
	Example: (4)
	Nested Queries
	STUDENT
	STUDENT_COURSE
	Students
	Classes
	Views in SQL
	Sample table: Student_Detail
	1. Creating view
	Syntax: (3)
	2. Creating View from a single table
	Output: (11)
	Query:
	Syntax (8)
	Example: (5)
	Uses of a View :
	1. Restricting data access –
	2. Hiding data complexity –
	3. Simplify commands for the user –
	4. Store complex queries –
	5. Rename Columns –
	6. Multiple view facility –
	Syntax: (4)
	BEFORE and AFTER of Trigger:
	Example: (6)
	Suppose the database Schema –
	Syntax for creating trigger:
	DECLARE
	BEGIN
	Here,
	Create table and have records:
	DECLARE (1)
	BEGIN (1)
	Check the salary difference by procedure:
	DECLARE (2)
	BEGIN (2)
	Procedure
	Syntax for creating procedure:
	IS
	BEGIN (3)
	Create procedure example
	Table creation:
	Procedure Code:
	is begin
	BEGIN (4)
	Syntax for drop procedure

	UNIT- III
	Normalization – Introduction, Non loss decomposition and functional dependencies, First, Second, and third normal forms – dependency preservation, Boyce/Codd normal form. Higher Normal Forms - Introduction, Multi-valued dependencies and Fourth normal ...
	Lossless Decomposition
	Example:
	o EMPLOYEE table:
	Employee ⋈ Department
	Lossy Decomposition
	<EmpInfo>
	<EmpDetails>
	Anomalies in DBMS
	EMPLOYEE table:
	Example 3 –
	Second normal form (2NF)
	TEACHER table
	TEACHER_DETAIL table:
	teacher_details table:
	Second Normal Form –
	Third Normal Form (3NF)
	Example: EMPLOYEE_DETAIL table:
	EMPLOYEE table: (1)
	Third Normal form (3NF)
	employee table:
	Third Normal Form –
	Fourth normal form (4NF)
	STUDENT
	STUDENT_COURSE
	Fourth normal form (4NF) (1)
	STUDENT (1)
	STUDENT_COURSE (1)
	Fifth normal form (5NF)
	P1

	Advantages of Normalization
	Disadvantages of Normalization
	UNIT-IV
	TRANSACTION MANAGEMENT IN DBMS:
	STATES OF TRANSACTION
	Active state
	Partially committed
	Committed
	Failed state
	Aborted
	TRANSACTION PROPERTY
	Atomicity
	Consistency
	Isolation
	Durability
	IMPLEMENTATION OF ATOMICITY AND DURABILITY
	Shadow copy:
	SCHEDULE
	1. SERIAL SCHEDULE
	2. NON-SERIAL SCHEDULE
	3. SERIALIZABLE SCHEDULE
	VIEW SERIALIZABILITY?
	Above two schedules is view equal because Final write operation in S1 is done by T3 and in S2, the final write operation is also done by T3.
	TRANSACTION ISOLATION LEVELS IN DBMS
	FAILURE CLASSIFICATION
	2. System Crash
	3. Disk Failure
	CONCURRENT EXECUTION OF TRANSACTION
	Advantages of concurrent execution of a transaction
	Problems with Concurrent Execution
	1. Lost update problem (Write – Write conflict)
	Here,
	Dirty read problem (W-R conflict)
	Here, (1)
	Unrepeatable read (R-W Conflict)
	Here, (2)
	CONCURRENCY CONTROL
	Concurrency Control Protocols
	Lock-Based Protocol
	1. Shared lock:
	2. Exclusive lock:
	TWO-PHASE LOCKING (2PL)
	Example:
	Transaction T1:
	Transaction T2:
	TIMESTAMP ORDERING PROTOCOL
	Basic Timestamp ordering protocol works as follows:
	Where,
	THOMAS WRITE RULE
	MULTIPLE GRANULARITY

	UNIT-V
	Recovery and Atomicity:
	Log-Based Recovery
	1. Deferred database modification:
	2. Immediate database modification:
	Recovery with Concurrent Transactions
	Interaction with concurrency control:
	Transaction rollback :
	Checkpoints :
	Restart recovery:
	Check Points:
	BUFFER MANAGEMENT
	 Data must be in RAM for DBMS to operate on it!
	Failure with Loss of Nonvolatile Storage
	ARIES Algorithm:
	1. Undo-only log record:
	2. Redo-only log record:
	3. Undo-redo log record:
	1. Analysis:
	2. Redo:
	3. Undo:
	Remote Backup




